CS244b - Distributed Systems

@ Administrivia

Instructors: Jack Humphries & David Mazieres
CAs: Samidh Mehta, Yiting Wu, Julius Zhang, more to come @ Remote procedure call

Stanford University
@ Consensus in asynchronous systems

1/33 2/33

e Class web page: http://cs244b.scs.stanford.edu/
- All handouts, lecture notes are on line

¢ Read papers before class (count several hours)
¢ Final project

* Please join edstem - Perform a small research project in teams of 2-4 students

- Can ask questions by noon on lecture day to influence lecture - Use ideas from papers we’ve discussed in class
- Also find teammates, delve into topics with more detail, etc. « Schedule:
* Each class will involve discussing papers - April 15: Form team (can use mailing list to find teammates)
- Print, read the papers before class - April 22: Schedule meeting with Instructor or CA to discuss project
- Class participation is required (or edstem if you have special - Shortly after meeting: project title and one paragraph
dispensation not to attend)* - May 31: Submit git repository, and revised title/paragraph
- We will post discussion notes after lecture - June 7: Submit paper on project (up to 6 pages)
» Zoom should work for SCPD (please mute your mic) - June 8: Project presentations/demos (8:30am-5pm)

> Refreshments and lunch will be served
* Final project most important part of grade
- Also based on class participation, possible homeworks/midterm(s)

o Staff mailing list: cs244b-staff@scs.stanford.edu
- Please email all staff rather than individual members
subject to change depending on enrollment

3/33 4/33

Distributed programming models

Dealing with failure, including Byzantine failure
Scalability
Techniques: Consensus, Replication, Consistency...

e Case studies: production systems at Google, Amazon,...

e Most real systems are actually distributed systems

¢ If you want fault-tolerance or scalability
- Must replicate or shard across multiple machines
¢ If you want systems that span administrative realms
- Web sites, peer-to-peer systems, communication systems

5/33 6/33

* Procedure calls are a well-understood mechanism
- Transfer control and data on single computer

@ Administrivia » RPC’s goal is to make distributed programming look like as
much as possible like normal programming
- Code libraries provide APIs to access functionality
- RPC servers export interfaces accessible through local APIs

- See [Birrell] for good description of one implementation

@ Remote procedure call

© Consensus in asynchronous systems ¢ Implement RPC through request-response protocol
- Procedure call generates network request to server
- Server return generates response

* Good example of how distributed systems differ...

7/33 8/33
Procedure vs. RPC Procedure vs. RPC
e Consider the following ordinary procedure: e Consider the following ordinary procedure:
bool add_user(string user, string password); bool add_user(string user, string password);
* Possible return values: * Possible return values:
1. true: user added 1. true: user added
2. false: user not added (e.g., user invalid or already exists) 2. false: user not added (e.g., user invalid or already exists)
* Now say you have an RPC version * Now say you have an RPC version
- Must somehow set up connections, bind to server, think about - Must somehow set up connections, bind to server, think about
authentication, etc., but ignore all that for now authentication, etc., but ignore all that for now
e What are the possible return values of add_user RPC? e What are the possible return values of add_user RPC?
1. true
2. false

3. “Idon’t know”

9/33 9/33

RPC Failure Implementing at most once semantics

* Normal procedure call has caller/callee fate sharing
- Single process: if callee fails, caller fails, too * Danger: Request message lost
- Client must retransmit requests when it gets no reply

RPC introduces more failure modes
- Machine failures at only one end (caller or callee) * Danger: Reply message may be lost
- Communication failures - Client may retransmit previously executed request

- Okay if operations are idempotent, but many are not
(e.g., process order, charge customer, ...)

Result: RPCs can return “failure” instead of results

* What are the possible outcomes after failure? - Server must keep “replay cache” to reply to already executed
- Procedure did not execute requests
- Procedure executed once e Danger: Server takes too long to execute procedure

- Procedure executed multiple times

- Client will retransmit request already in progress
- Procedure partially executed

- Server must recognize duplicate—can reply “in progress”
* Many systems aspire to “at most once semantics”

10/33 11/33

* Danger: Server crashes and reply lost

- Can make replay cache persistent—slow
- Can hope reboot takes long enough for all clients to fail

Trivial for normal procedure calls

RPC must worry about different data representations

- Big/little endian

* Danger: Server crashes during execution - Size of data types

- Can log enough to restart partial execution—slow and hard
- Can hope reboot takes long enough for all clients to fail

RPC has no shared memory
- No global variables
- How to pass pointers
- How to garbage-collect distributed objects

¢ Can use “cookies” to inform clients of crashes

- Server gives client cookie which is time of boot
- Clientincludes cookie with RPC

H « ”» 2
- After server crash, server will reject invalid cookie * How to pass unions (“sum types”) over RPCI

12/33 13/33

Interface Definition Languages C++ RPC-related systems in use today

e XML, JSON over HTTP - no IDL, hard to parse
© CBOR - like JSON but more tasteful, compact binary format

¢ Idea: Specify RPC call and return types in IDL e Cereal - C++11 structure serializer

 Compile interface description with IDL compiler. Output: * Google protobufs + gRPC, Apache Thrift
- Native language types (e.g., C/C++/Java/go/etc. structs) + Compact encoding, defensively coded (protobufs)
- Code to marshal (serialize) native types into byte streams * Good support fc?r mcrementa'lly evolving messages
- Stub routines on client to forward requests to server - Complex encoding, no canonical representation

e Apache Avro - self-describing messages contain schema
e Cap’n Proto, Google FlatBuffers
+ Same representation in memory and on wire, very fast
- Less mature, non-deterministic wire format, bigger attack surface
XDR (+ RPC) - used by Internet standards such as NFS
+ Simple, good features (unions, fixed- and variable-size arrays, ...)
- Bigendian, binary but rounds everything to multiple of 4 bytes

14/33 15/33

enum MyEnum { NO, YES, MAYBE };

e Stub routines handle communication details
- Helps maintain RPC transparency, but...
- Still have to bind client to a particular server
- Still need to worry about failures

struct MyMessage {
string name<16>; /* up to 16 characters */
* Write and run a simple distributed application using RPC string desc<>; /* up to 2°32-1 characters */
opaque cookie[8]; /* 8 bytes (fixed) */

- Use any of the technologies from previous slide opaque sig<16>; /x 0-16 bytes (variable-length) */

- Orany other RPC system you like unsigned int u; /* Unsigned 32-bit integer */

- Try a different technology if you already use one regularly hyper ii; /* Signed 64-bit integer */
MyEnum me; /* Another user-defined type */

* We won’t grade it, but it will help with your project int ial[5]; /* Fixed-length array */
int iv<>; /* Variable length array */
int iv1; /* Up to 5 ints */
MyMessage *mep; /* optional MyMessage (or NULL) */
3

typedef MyMessage *OptionalMyStruct;

16/33 17/33

XDR base types XDR containers and structs

e All numeric values encoded in big-endian order * (Fixed) arrays - MyType var[n]
® int,unsigned [int], all enums: 4 bytess - Encoded as n copies of MyType
* bool: equivalent to “enun bool { FALSE, TRUE }” * Vectors - MyType var<>orMyType var<n>

- Can hold variable number (0-n) MyTypes

* hyper, unsigned hyper: 8 bytes - Encoded as 4-byte length followed by that many

* float, double, quadruple: 4-, 8-, or 16-byte floating point - Empty maximum length means maximum length 232 — 1 MyTypes
* opaque bytes[Len] (fixed-size) e Optional data - MyType *var

- Encoded as content + 0-3 bytes padding to make size multiple of 4 - Encoded exactly as MyType var<i>
® string s<MaxLen>, opaque a<MaxLen> (variable-size) - Note this means single “present” bit consumes 4 bytes

- 4-byte length + content + (0-3 bytes) padding * struct - each field encoded in turn

18/33 19/33

union type switch (simple_type which) {
case value_A:
type_A varA;

case value_B: git clone http://cs244b.scs.stanford.edu/xdrdemo.git
type_B varB;

VARV
default: * References for demo
void;
}; - C++RPClibrary: https://github.com/xdrpp/xdrpp
- Go RPC library: https://github.com/xdrpp/goxdr
- XDR specification: RFC4506
® simple_type must be [unsigned] int,bool, Or enum - RPC specification: RFC5531

* Must be discriminated, unlike C/C++

* Wire representation:

- 4-bytes for which + encoding of selected case
- Special void type encoded as 0 bytes

20/33 21/33

¢ Atheoretical model for distributed systems

- Consists of a set of agents exchanging messages
@ Administrivia - No bound on message delays
- No bound on the relative execution speed of agents
- For convenience, model internal events such as timeouts as
@ Remote procedure call special messages, so the “network” controls all timing
e Can’t distinguish failed agent from slow network

¢ Idea of model is to be conservative
- Want robustness under any possible timing conditions
- E.g., say backhoe tears fiber, takes a day to repair
- Could see messages delays a billion times more than usual

©® Consensus in asynchronous systems

2Unrelated to “asynchronous I0” as used in event-driven systems.
22/33 23/33

The consensus problem The consensus problem

Agent 1 Agent 2 Agent 3

in: 3 in: 9 in: 7
out: out: out:

e Goal: For multiple agents to agree on an output value
— Each agent starts with an input value
- Agents’ inputs may differ; any agent’s input is okay to output
* Agents communicate following some consensus protocol
- Use protocol to agree on one of the agent’s input values
* Once decided, agents output the chosen value
- Output is write-once (an agent cannot change its value)

24/33

The consensus problem Properties of a consensus protocol

messages

in:9 [¢ >
out: 9

* Goal: For multiple agents to agree on an output value
* Each agent starts with an input value
- Agents’ inputs may differ; any agent’s input is okay to output
* Agents communicate following some consensus protocol
- Use protocol to agree on one of the agent’s input values
— Once decided, agents output the chosen value
- Output is write-once (an agent cannot change its value)

24/33

Bivalent states Bivalent states

messages

— Recall agents chose value 9 in last example
* But a network outage could look like agent 2 failing
¢ If fault-tolerant, Agents 1 & 3 might decide to output 7
* Once network back, Agent 2 must also output 7

Definition (Bivalent)

An execution of a consensus protocol is in a bivalent state when the
network can affect which value agents choose.

26/33

messages

Agent 2

in: 9
out:

e Goal: For multiple agents to agree on an output value
e Each agent starts with an input value
- Agents’ inputs may differ; any agent’s input is okay to output

— Agents communicate following some consensus protocol

- Use protocol to agree on one of the agent’s input values
* Once decided, agents output the chosen value
- Output is write-once (an agent cannot change its value)

24/33

e A consensus protocol provides safety if...
- Agreement - All outputs produced have the same value, and
- Validity - The output value equals one of the agents’ inputs
¢ A consensus protocol provides liveness if...
- Termination - Eventually non-failed agents output a value
* A consensus protocol provides fault tolerance if...

- It can survive the failure of an agent at any point
- Fail-stop protocols handle agent crashes
- Byzantine-fault-tolerant protocols handle arbitrary agent behavior

Theorem (FLP impossibility result)

No deterministic consensus protocol guarantees all three of safety,
liveness, and fault tolerance in an asynchronous system.

25/33

Agent 2 down?

messages

¢ Recall agents chose value 9 in last example

— But a network outage could look like agent 2 failing

e If fault-tolerant, Agents 1 & 3 might decide to output 7
* Once network back, Agent 2 must also output 7

Definition (Bivalent)

An execution of a consensus protocol is in a bivalent state when the
network can affect which value agents choose.

26/33

Bivalent states Bivalent states

Agent 2 down?

messages messages

* Recall agents chose value 9 in last example ¢ Recall agents chose value 9 in last example
* But a network outage could look like agent 2 failing * But a network outage could look like agent 2 failing
— If fault-tolerant, Agents 1 & 3 might decide to output 7 e If fault-tolerant, Agents 1 & 3 might decide to output 7

* Once network back, Agent 2 must also output 7 — Once network back, Agent 2 must also output 7
Definition (Bivalent) Definition (Bivalent)
An execution of a consensus protocol is in a bivalent state when the An execution of a consensus protocol is in a bivalent state when the
network can affect which value agents choose. network can affect which value agents choose.

26/33 26/33

e Consider a terminating execution of a bivalent system

Definition (Univalent, Valent)

An execution of a consensus protocol is in a univalent state when
only one output value is possible. If that value is /, call the state - Call m the execution’s deciding message
i-valent. - Any terminating execution requires a deciding message

e Let m be last message received in a bivalent state

e Suppose the network had delayed m
- Other messages could cause transitions to other bivalent states
- Then, receiving m might no longer lead to a univalent state

J - In this case, we say m has been neutralized

Definition (Stuck)

An execution of a [broken] consensus protocol is in a stuck state
when one or more non-faulty nodes can never output a value.

¢ Recall output is write once and all outputs must agree

. S Overview of FLP proof.
- Hence, no output is possible in bivalent state

1. There are bivalent starting configurations

¢ If an execution starts in a bivalent state and terminates, it 2. The network can neutralize any deciding message

must at some point reach a univalent state

3. Hence, the system can remain bivalent in perpetuity O]
27/33 28/33
There exists a bivalent state There exists a bivalent state
Scenario A Scenario A Scenario B
messages messages messages

Agent 2 Agent 2 Agent 2

e Assume you could have liveness with an agent failure e Assume you could have liveness with an agent failure
— If allinputs 0, correct agents must eventually output 0 e If allinputs 0, correct agents must eventually output 0

- Similarly, if allinputs 1, correct agents must eventually output 1 — Similarly, if all inputs 1, correct agents must eventually output 1

* Now say we start flipping one input bit at a time * Now say we start flipping one input bit at a time

* Find 0- and 1-valent states differing at only one input ¢ Find 0- and 1-valent states differing at only one input
- Suppose node with this differing input fails - Suppose node with this differing input fails
- By assumption, the system nonetheless reaches consensus - By assumption, the system nonetheless reaches consensus
- Hence output depends on network; at least one state was bivalent - Hence output depends on network; at least one state was bivalent

29/33 29/33

There exists a bivalent state There exists a bivalent state

Scenario C Scenario D Scenario C Scenario D

messages messages messages messages

Agent 2 Agent 2

e Assume you could have liveness with an agent failure e Assume you could have liveness with an agent failure

e If allinputs 0, correct agents must eventually output 0 e Ifallinputs 0, correct agents must eventually output 0
- Similarly, if allinputs 1, correct agents must eventually output 1 - Similarly, if all inputs 1, correct agents must eventually output 1

* Now say we start flipping one input bit at a time * Now say we start flipping one input bit at a time

— Find 0- and 1-valent states differing at only one input e Find 0- and 1-valent states differing at only one input
- Suppose node with this differing input fails — Suppose node with this differing input fails
- By assumption, the system nonetheless reaches consensus - By assumption, the system nonetheless reaches consensus
- Hence output depends on network; at least one state was bivalent - Hence output depends on network; at least one state was bivalent
29/33 29/33

Any message can be neutralized Any message can be neutralized
m L&) m L0,

— Let m be a deciding message for value 0 from state b e Let m be a deciding message for value 0 from state b
- Let’s assume m cannot be neutralized and derive a contradiction - Let’s assume m cannot be neutralized and derive a contradiction
* Consider a message schedule from b to a 1-valent state — Consider a message schedule from b to a 1-valent state
- If mis on the path, it leads to a bi-valent state (so neutralized) - If mis on the path, it leads to a bi-valent state (so neutralized)
- If mis not on the path, append it to the (1-valent) path - If mis not on the path, append it to the (1-valent) path
* Apply m to each node on the path e Apply m to each node on the path
- Either m will lead to a bi-valent state (neutralized), or it will - Either m will lead to a bi-valent state (neutralized), or it will
produce differing univalent states on adjacent nodes ¢y and ¢; produce differing univalent states on adjacent nodes ¢y and ¢;
30/33 30/33

Any message can be neutralized Any message can be neutralized

m L. m L0,
O m ©

m
* Let m be a deciding message for value 0 from state b e Let m be a deciding message for value 0 from state b
- Let’s assume m cannot be neutralized and derive a contradiction - Let’s assume m cannot be neutralized and derive a contradiction
e Consider a message schedule from b to a 1-valent state e Consider a message schedule from b to a 1-valent state
— If mis on the path, it leads to a bi-valent state (so neutralized) - If mis on the path, it leads to a bi-valent state or to a 1-valent one
- If mis not on the path, append it to the (1-valent) path — If mis not on the path, append it to the (1-valent) path
* Apply m to each node on the path * Apply m to each node on the path
- Either m will lead to a bi-valent state (neutralized), or it will - Either m will lead to a bi-valent state (neutralized), or it will
produce differing univalent states on adjacent nodes ¢y and ¢; produce differing univalent states on adjacent nodes ¢y and ¢;

30/33 30/33

Any message can be neutralized Any message can be neutralized

, -
« Let m be a deciding message for value 0 from state b — Let m’ be the message that transitions between ¢y, and ¢;

- Let’s assume m cannot be neutralized and derive a contradiction ¢ If m, m' received by different agents, order won’t matter
o Consider a message schedule from b to a 1-valent state - Butif delivering both messages yields a 1-valent state, delivering
- If mis on the path, it leads to a bi-valent state or to a 1-valent one justm can’tyield a O-valent state
- If mis not on the path, append it to the (1-valent) path * Hence, m and m’ were addressed to the same agent A, making
— Apply m to each node on the path order significant
- Either m will lead to a bi-valent state (neutralized), or it will « Yet if A slow after ¢y, system must terminate without it
produce differing univalent states on adjacent nodes ¢y and ¢;
30/33 31/33

Any message can be neutralized Any message can be neutralized

XL Xn

5

e Let m' be the message that transitions between ¢y and ¢; —s Consider a run that terminates without A

- Letxy,...,x, be the messages received (by nodes other than A)
- Let e be a univalent state reached during the run

— If m, m’ received by different agents, order won’t matter

- Butif delivering both messages yields a 1-valent state, delivering

just m can’t yield a 0-valent state . L.
e Deliver x, ..., x, to terminating states after m

- Since ms and xs received by different nodes, can re-order
- Means e not univalent (leads to both 0- and 1-valent states)!

* Hence, m and m’ were addressed to the same agent A, making
order significant

* Yet if A slow after ¢y, system must terminate without it e .
¢ Contradiction means m must be neutralized somewhere

31/33 32/33

Any message can be neutralized Any message can be neutralized

m’ (e
"‘--._3{1, o Xn m
X1, .. Xn@ @ ®X1 L Xn -\ Xn
¢ Consider a run that terminates without A ¢ Consider a run that terminates without A
- Letxy,...,x, be the messages received (by nodes other than A) - Letxy,...,x, be the messages received (by nodes other than A)
- Let e be a univalent state reached during the run - Let e be a univalent state reached during the run
— Deliver xy, ..., x, to terminating states after m e Deliver x, ..., x, to terminating states after m
- Since ms and xs received by different nodes, can re-order - Since ms and xs received by different nodes, can re-order
- Means e not univalent (leads to both 0- and 1-valent states)! — Means e not univalent (leads to both 0- and 1-valent states)!
¢ Contradiction means m must be neutralized somewhere ¢ Contradiction means m must be neutralized somewhere

32/33 32/33

Coping with FLP

* This class will cover

- Many systems that require consensus
- Many techniques for consensus

Safety is generally pretty important

* But can reasonably weaken liveness requirement

- Termination not guaranteed doesn’t mean it won’t happen

- If your algorithm prevents completely stuck states
...can often make it terminate “in practice”

Can weaken asynchronous system assumption

e Can make agents non-deterministic

- Have all nodes flip a coin to pick value—might all pick same value

- Make it intractable for network to “guess” pathological delivery
100% accurately in perpetuity

33/33

