
Introduction
● Large distributed applications run across multiple machines to improve performance and

scalability
○ Model serving
○ Online video processing
○ Distributed training
○ etc.

● These applications can be split into smaller tasks and actors
○ What is the difference between a task and an actor?

● A driver process launches the application and coordinates everything
○ It is essentially the “head” or the root node

● How do these tasks/actors communicate? With RPCs
○ Discuss similarities/differences between RPCs and local function calls

● Pass by value vs. pass by reference
● Synchronous vs. asynchronous RPCs

○ Parallelism
○ Overlapping compute with communication (latency hiding)

● Promises and futures

● Distributed futures are not a new idea, though previous implementations require
significant coordination and overhead in sharing state between processes

○ This coordination is necessary to ensure the application/system can
recover from failures. Otherwise, little-to-no coordination would be
necessary.

○ This is fine for tasks that require significant compute
○ But this doesn’t work well for fine-grained tasks
○ Why not?

■ Because the system overheads become responsible for a much larger
portion of the application runtime, as the application compute is much
smaller

○ AIFM suffers from a similar problem, and thus offloads compute to a remote node

● Previous solutions:
○ Centralized master

■ Record coordination data at centralized master
● Simple implementation, but does not scale because master

becomes a centralized bottleneck
○ Leases

● Ownership with distributed futures
○ Scales horizontally

■ Essentially shard the work across all nodes instead of at the master
● e.g., nested tasks



○ Local metadata writes at the task’s caller (which is also the object’s owner)
○ Simple failure handling

■ Each worker is essentially a “centralized master” for the objects it owns
● Ownership tracks object lifetimes with distributed reference counting

○ The system garbage collects objects with a reference count of 0
○ What about reference cycles? e.g., an actor invokes a task, which in turn invokes

the actor.
■ class A:
■ def call(self, B):
■ self.x_ref = B.foo.remote()
■
■ def foo(self):
■ return self.x_ref

● Uses lineage reconstruction to recover objects upon worker or object store failure
○ Basically, the tasks are run again to produce the objects again
○ Tasks must be idempotent
○ Only the minimal subset of tasks are rerun
○ Tasks fate-share with the owners of any objects they reference

● Key insight: uses application semantics for better performance
○ Brief discussion of AIFM

API
● Show the API on iPad

Applications
● Model serving
● Distributed processing
● If the students mention another workload, we should sketch out the workload graph

structure

Overview
● Requirements

○ Automatic memory management
○ Failure detection
○ Failure recovery

● Automatic memory management
○ Reclaims objects via garbage collection
○ Tracks object via reference counting

● Failure detection
○ Why isn’t this easy? Shouldn’t a worker be able to tell when another work

crashes?
○ Distributed futures complicate this



■ A worker doesn’t necessarily know where a value it wants to load will be
located

■ This is because maybe the other worker that will generate the value
hasn’t been scheduled yet

● Or maybe it has, but then the scheduling decision was updated
○ Systems records location of all objects and all tasks (i.e., pending objects)

● Failure recovery
○ Want failure recovery to be transparent to the application
○ Need to keep metadata up to date. Metadata includes:

■ Location of each object (so it can be retrieved by people with references)
■ Whether the object is still referenced (for garbage collection)
■ Location of each pending object
■ Object lineage

○ Existing solutions:
■ Centralized master
■ Distributed leases

● What are distributed leases?
● What are their downsides? i.e., why are they not a sufficient

approach here?
○ Slower to detect failure (need to wait for lease to expire)
○ Upon failure, workers need to coordinate among

themselves to determine who should recover/regenerate
an object

● Solution: Ownership
○ Essentially distributes the control plane across all the workers
○ Leverages insight into application semantics to do this efficiently
○ The task’s caller is the owner of the task and the object it produces

■ Why?
● Task owner is likely to write metadata the most, so it can do local

writes
● If object stays only in owner’s scope, then garbage collection is

easier and has lower overhead because there is no need to do
distributed reference counting

■ A couple issues to solve though:
● First-class futures

○ So a future may leave an owner’s scope… need to
account for this with reference counting

■ Centralized reference counting doesn’t scale, so
need a distributed mechanism

● Owner recovery
○ When an owner fails, what do we do about dangling

references?



○ We have the object and any reference holders with the
owner

■ When the owner dies, those are killed
■ System uses lineage reconstruction to regenerate

the objects

● Ownership Design
○ Each worker has an ownership table

■ It tracks each future it has in this table
■ An owner tracks everything about the object in the table
■ A borrower tracks a subset of this data

○ There is a distributed task scheduler
○ There is a distributed memory layer

■ This and the scheduler will be explained more in the Ray paper this week
■ Why are objects immutable? Doesn’t this reduce the utility of the system?

○ Task scheduler
■ Ray has a distributed scheduler (more on Wednesday)
■ An owner first requests resources from its local scheduler
■ If there are no local resources available, the scheduler has the owner

contact the scheduler on a remote node for resources
■ Once resources are found, the scheduler grants the owner a lease
■ The owner updates its ownership table
■ The owner can bypass the scheduler and reuse the resources for

something else if the lease is still active
○ Memory management

■ Objects are stored in a distributed object store
■ Small objects are passed by value (< 100 KiB) while large objects are

stored in the object store
■ The primary copy on the owner is pinned, and other objects that are not

pinned can be evicted via LRU when the system is under memory
pressure

■ Objects are reclaimed when their reference count is 0
● No tasks on the owner are using the object
● And there are no dependent tasks that are using or borrowing the

object
○ Failure recovery

■ When a worker (not a node!) fails, the local scheduler publishes this to
other workers and nodes

■ Nodes (not workers!) exchange heartbeats, so this can detect when a
node itself fails

■ The owner does lineage reconstruction
● In other words, it scans its ownership table to determine the

minimal set of things to re-run



● You could always just re-run the task without consulting the
ownership table, but this could induce extra unnecessary
overhead

■ Object recovery
● Basically just run the tasks again

■ Owner recovery
● All reference holders fate share with the owner
● This includes children and ancestors of the owner

○ An owner can pass a DFut or a SharedDFut to a child
○ An owner can also return a value to an ancestor
○ Thus, any borrower can be a child or an ancestor

● Actor recovery is outside the scope of the paper
○ It can reuse the same mechanism
○ But local actor state must be recovered, which cannot use

the technique in this paper


