Ownership: A Distributed Futures System for Fine-Grained Tasks

Stephanie Wang*, Eric Liang*, Edward Oakes*, Ben Hindman, Frank Luan, Audrey Cheng, lon Stoica
UC Berkeley, *and Anyscale

Abstract

The distributed futures interface is an increasingly popular
choice for building distributed applications that manipulate
large amounts of data. Distributed futures are an extension
of RPC that combines futures and distributed memory: a
distributed future is a reference whose eventual value may
be stored on a remote node. An application can then express
distributed computation without having to specify when or
where execution should occur and data should be moved.

Recent distributed futures applications require the ability
to execute fine-grained computations, i.e., tasks that run on
the order of milliseconds. Compared to coarse-grained tasks,
fine-grained tasks are difficult to execute with acceptable sys-
tem overheads. In this paper, we present a distributed futures
system for fine-grained tasks that provides fault tolerance
without sacrificing performance. Our solution is based on a
novel concept called ownership, which assigns each object a
leader for system operations. We show that this decentralized
architecture can achieve horizontal scaling, 1ms latency per
task, and fast failure handling.

1 Introduction

RPC is a standard for building distributed applications be-
cause of its generality and because its simple semantics yield
high-performance implementations. The original proposal
uses synchronous calls that copy return values back to the
caller (Figure 2a). Several recent systems [4,34,37,45] have
extended RPC so that, in addition to distributed communica-
tion, the system may also manage data movement and paral-
lelism on behalf of the application.

Data movement. Pass-by-value semantics require all RPC
arguments to be sent to the executor by copying them directly
into the request body. Thus, performance degrades with large
data. Data copying is both expensive and unnecessary in cases
like Figure 2a, where a process executes an RPC over data
that it previously returned to the same caller.

To reduce data copies, some RPC systems use distributed
memory [16,27,37,40,41]. This allows large arguments to be
passed by reference (Figure 2b), while small arguments can
still be passed by value. In the best case, arguments passed
by reference to an RPC do not need to be copied if they are
already on the same node as the executor (Figure 2b). Note
that, like traditional RPC, we make all values immutable to
simplify the consistency model and implementation.
Parallelism. RPCs are traditionally blocking, so control is
only returned to the caller once the reply is received (Fig-

a_future = compute ()

b_future = compute ()

c_future = add(a_future, b_future)
c = system.get (c_future)

Figure 1: A distributed futures program. compute and add are state-
less. a_future, b_future, and c_future are distributed futures.

Pass by reference

Pass by value (Distributed memory)

Driver ~ Worker 1 Worker 2 Driver ~ Worker 1 Worker 2
173
o
o
[4
-]
c
£
[*]
K]
[}
(b)
% Driver  Worker1 Worker 2 Driver ~ Worker 1 Worker 2
[
5
5
v
»
o
o
[
(=2
=
£
[*]
o
]
c
)
=z

(d)

Figure 2: Example executions of the program from Figure 1. (a) With
RPC. (b) With RPC and distributed memory, allowing the system to
reduce data copies. (¢) With RPC and futures, allowing the system
to manage parallel execution. (d) With distributed futures.

ure 2a). Futures are a popular method for extending RPC
with asynchrony [8,29], allowing the system to execute func-
tions in parallel with each other and the caller. With composi-
tion [29,37], i.e., passing a future as an argument to another
RPC, the application can also express the parallelism and
dependencies of future RPCs. For example, in Figure 2¢, add
is invoked at the beginning of the program but only executed
by the system once a and b are computed.

Distributed futures are an extension of RPC that combines
futures with distributed memory: a distributed future is a
reference whose eventual value may be stored on a remote
node (Figure 2d). An application can then express distributed
computation without having to specify when or where exe-
cution should occur and data should be moved. This is an
increasingly popular interface for developing distributed ap-
plications that manipulate large amounts of data [4,34,37,45].

As with traditional RPC, a key goal is generality. To achieve
this, the system must minimize the overhead of each function
call [13]. For example, the widely used gRPC provides hori-
zontal scalability and sub-millisecond RPC latency, making



it practical to execute millions of fine-grained functions, i.e.
millisecond-level “tasks”, per second [2].

Similarly, there are emerging examples of large-scale, fine-
grained applications of distributed futures, including rein-
forcement learning [34], video processing [22,43], and model
serving [49]. These applications must optimize parallelism
and data movement for performance [39,43,49], making dis-
tributed futures apt. Unfortunately, existing systems for dis-
tributed futures are limited to coarse-grained tasks [37].

In this paper, we present a distributed futures system for
fine-grained tasks. While others [34,37,45] have implemented
distributed futures before, our contribution is in identifying
and addressing the challenges of providing fault tolerance for
fine-grained tasks without sacrificing performance.

The primary challenge is that distributed futures introduce
shared state between processes. In particular, an object and
its metadata are shared by its reference holder(s), the RPC ex-
ecutor that creates the object, and its physical location(s). To
ensure that each reference holder can dereference the value,
the processes must coordinate, a difficult problem in the pres-
ence of failures. In contrast, traditional RPC has no shared
state, since data is passed by value, and naturally avoids coor-
dination, which is critical to scalability and low latency.

For example, in Figure 2a, once worker 1 copies a to the
driver, it does not need to be involved in the execution of
the downstream add task. In contrast, worker 1 stores a in
Figure 2d, so the two workers must coordinate to ensure that a
is available long enough for worker 2 to read. Also, worker 1
must garbage-collect a once worker 2 executes add and there
are no other references. Finally, the processes must coordinate
to detect and recover from the failure of another process.

The common solution in previous systems is to use a cen-
tralized master to store system state and coordinate these
operations [34,37]. A simple way to ensure fault tolerance is
to record and replicate metadata at the master synchronously
with the associated operation. For example, in Figure 2d, the
master would record that add is scheduled to worker 2 before
dispatching the task. Then, it can correctly detect ¢’s failure
if worker 2 fails. However, this adds significant overhead for
applications with a high volume of fine-grained tasks [32,51].

Thus, decentralizing the system state is necessary for scal-
ability. The question is how to do so without complicating co-
ordination. The key insight in our work is to exploit the appli-
cation structure: a distributed future may be shared by passing
by reference, but most distributed futures are shared within
the scope of the caller. For example, in Figure 1, a_future
is created then passed to add in the same scope.

We thus propose ownership, a method of decentralizing
system state across the RPC executors. In particular, the caller
of a task is the owner of the returned future and all related
metadata. In Figure 2d, the driver owns a, b, and c.

This solution has three advantages. First, for horizontal
scalability, the application can use nested tasks to “shard”
system state across the workers. Second, since a future’s

owner is the task’s caller, task latency is low because the
required metadata writes, though synchronous, are local. This
is in contrast to an application-agnostic method of sharding,
such as consistent hashing. Third, each worker becomes in
effect a centralized master for the distributed futures that it
owns, simplifying failure handling.

The system guarantees that if the owner of a future is alive,
any task that holds a reference to that future can eventually
dereference the value. This is because the owner will co-
ordinate system operations such as reference counting, for
memory safety, and lineage reconstruction, for recovery. Of
course, this is not sufficient if the owner fails.

Here, we rely on lineage reconstruction and a second key
insight into the application structure: in many cases, the ref-
erences to a distributed future are held by tasks that are a de-
scendant of the failed owner. The failed task can be recreated
through lineage reconstruction by its owner, and the descen-
dant tasks will also be recreated in the process. Therefore, it
is safe to fate-share any tasks that have a reference to a dis-
tributed future with the future’s owner. As we expect failures
to be relatively rare, we argue that this reduction in system
overheads and complexity outweighs the cost of additional
re-execution upon a failure.

In summary, our contributions are:

* A decentralized system for distributed futures with trans-
parent recovery and automatic memory management.

* A lightweight technique for transparent recovery based
on lineage reconstruction and fate sharing.

¢ An implementation in the Ray system [34] that provides
high throughput, low latency, and fast recovery.

2 Distributed Futures

2.1 API

The key benefit of distributed futures is that the system can
transparently manage parallelism and data movement on be-
half of the application. Here, we describe the API (Table 1).

To spawn a task, the caller invokes a remote function that
immediately returns a DFut (Table 1). The spawned task com-
prises the function and its arguments, resource requirements,
etc. The returned DFut refers to the object whose value will
be returned by the function. The caller can dereference the
DFut through get, a blocking call that returns a copy of the
object. The caller can delete the DFut, removing it from scope
and allowing the system to reclaim the value. Like other sys-
tems [34,37,45], all objects are immutable.

After the creation of a DFut through task invocation, the
caller can create other references in two ways. First, the caller
can pass the DFut as an argument to another task. DFut task
arguments are implicitly dereferenced by the system. Thus,
the task will only begin once all upstream tasks have finished,
and the executor sees only the DFut values.



Operation Semantics
f(DFut x) — Invoke the remote procedure £, and pass x by reference.
DFut The system implicitly dereferences x to its Value be-

fore execution. Creates and returns a distributed future,
whose value is returned by £.

get (DFut x) —  |Dereference a distributed future. Blocks until the value
Value is computed and local.

del (DFut x) Delete a reference to a distributed future from the
caller’s scope. Must be called by the program.

Invoke a stateful remote procedure. £ must execute on
the actor referred to by Actor.

Returns a SharedDFut that can be used to pass x to
another worker, without dereferencing the value.
Passes x as a first-class DFut: The system dereferences
% to the corresponding DFut instead of the Value.

Actor.f (DFut x)
— DFut

shared (DFut x)
— SharedDFut
f (SharedDFut x)
— DFut

Table 1: Distributed futures API. The full API also includes an actor
creation call. A task may also return a DFut to its caller (nested
DFuts are automatically flattened).

Legend

O Task (RPC) Decode ! Flow |CumSum Smooth Sink
---» Invocation ' f"e/,,

— Data dependency l €6 transform | transform’

——> State dependency

Preprocess | H H
i

[ Router | b

[ Model |

(b) Video processing

(a) Model serving
Figure 3: Distributed futures applications.

Second, the DFut can be passed or returned as a first-class
value [21], i.e. passed to another task without dereferencing.
Table | shows how to cast a DFut to a SharedDFut, so the
system can differentiate when to dereference arguments. We
call the process that receives the DFut a borrower, to differ-
entiate it from the original caller. Like the original caller, a
borrower may create other references by passing the DFut or
casting again to a SharedDFut (creating further borrowers).

Like recent systems [4, 34,45], we support stateful com-
putation with actors. The caller creates an actor by invoking
a remote constructor function. This immediately returns a
reference to the actor (an ARef) and asynchronously executes
the constructor on a remote process. The ARef can be used
to spawn tasks bound to the same process. Similar to DFuts,
ARefs are first-class, i.e. the caller may return or pass the
ARef to another task, and the system automatically collects
the actor process once all ARefs have gone out of scope.

2.2 Applications

Typical applications of distributed futures are those for whom
performance requires the flexibility of RPC, as well as op-
timization of data movement and parallelism. We describe
some examples here and evaluate them in Section 5.2.
Distributed futures have previously been explored for data-
intensive applications that cannot be expressed or executed

efficiently as data-parallel programs [34,37]. Ciel identified
the key ability to dynamically specify tasks during execu-
tion, e.g., based on previous results, rather than specify the
entire graph upfront [37]. This enabled new workloads such
as dynamic programming, which is recursive by nature [54].

Our goal is to expand the application scope to include those
with fine-grained tasks that run in the milliseconds. We also
explore the use of actors and first-class distributed futures.
Model serving. The goal is to reduce request latency
while maximizing throughput, often by using model repli-
cas. Depending on the model, a latency target might be 10-
100ms [20]. Typically, an application-level scheduling policy
is required, e.g., for staged rollout of new models [46].

Figure 3a shows an example of a GPU-based image clas-
sification pipeline. Each client passes its input image to a
Preprocess task, e.g., for resizing, then shares the returned
DFut with a Router actor. Router implements the schedul-
ing policy and passes the DFut by reference to the chosen
Model actor. Router then returns the results to the clients.

Actors improve performance in two ways: (1) each Model
keeps weights warm in its local GPU memory, and (2) Router
buffers the preprocessed DFut s until it has a batch of requests
to pass to a Model, to leverage GPU parallelism for through-
put. With dynamic tasks, the Router can also choose to flush
its buffer on a timeout, to reduce latency from batching.

First-class distributed futures are important to reduce rout-

ing overhead. They allows the Router to pass the references
of the preprocessed images to the Model actors, instead of
copying these images. This avoids creating a bottleneck at
the Router, which we evaluate in Figure 15a. While the ap-
plication could use an intermediate storage system for pre-
processed images, it would then have to manage additional
concerns such as garbage collection and failures.
Online video processing. Video processing algorithms often
have complex data dependencies that are not well supported
by data-parallel systems such as Apache Spark [22,43]. For
example, video stabilization (Figure 3b) works by tracking
objects between frames (Flow), taking a cumulative sum of
these trajectories (CumSum), then applying a moving average
(Smooth). Frame-to-frame dependencies are common, such
as the video decoding state stored in an actor in Figure 3b.
Each stage runs in 1-10s of milliseconds per frame.

Safe and timely garbage collection in this setting can be
challenging because a single object (e.g., a video frame) may
be referenced by multiple tasks. Live video processing is also
latency-sensitive: output must be produced at the same frame
rate as the input. Low latency relies on pipelined parallelism
between frames, as the application cannot afford to wait for
multiple input frames to appear before beginning execution.

With distributed futures, the application can specify the
logical task graph dynamically, as input frames appear.
Meanwhile, the system manages the physical execution, i.e.
pipelined parallelism and garbage collection, according to
the specified graph. Concurrent video streams can easily be



Distributed futures
Driver ~ Worker 1 Worker 2

Distributed memory
Driver ~ Worker 1 Worker 2

c=add(
a,b)
?

(b)

Figure 4: Failure detection. (a) a’s location is known by the time
worker 2 receives the reference. (b) a’s location may not be known
when worker 2 receives add, so worker 2 cannot detect the failure.

Distributed futures
Driver ~ Worker 1 Worker 2

Futures
Driver ~ Worker 1 Worker 2

(a) ' (b)
Figure 5: Failure recovery. (a) Data is passed by value, so the driver

recovers by resubmitting add. (b) b is also lost. £’s description must
be recorded during runtime so that b can be recomputed.

supported using nested tasks, one “driver” per stream. The
system can then manage inter-video parallelism.

3 Overview

3.1 Requirements

The system guarantees that each DFut can be dereferenced to
its value. This involves three problems: automatic memory
management, failure detection, and failure recovery.
Automatic memory management is a system for dynamic
memory allocation and reclamation of objects. The system
must decide at run time whether an object is currently refer-
enced by a live process, e.g., through reference counting [42].
Failure detection is the minimum functionality needed to
ensure progress in the presence of failures. The system detects
when a DFut cannot be dereferenced due to worker failure.

With distributed memory but no futures, this is straightfor-
ward because the location of the value is known by the time
the reference is created. In Figure 4a, for example, the driver
learns that a is stored on worker 1 and could then attach the
location when passing a to worker 2. Then, when worker 2
receives add, it can detect a’s failure.

The addition of futures complicates failure detection be-
cause references can be created before the value. Even the
future location of the value may not be known at reference
creation time. Of course, the system could wait until a task
has been scheduled before returning the reference to the caller.
However, this would defeat the purpose of futures as an asyn-
chronous construct. It is also impractical because a realistic
scheduler must be able to update its decision at run time, e.g.,

according to changes in the environment such as resource
availability and worker failures.

Thus, it is possible that there are no locations for a when

worker 2 receives the add RPC in Figure 4b. Then, worker 2
must decide whether f is still executing, or if it has failed. If
it is the former, then worker 2 should wait. But if there is a
failure, then the system must recover a. To solve this problem,
the system must record the locations of all tasks, i.e. pending
objects, in addition to created objects.
Failure recovery. The system must also provide a method
of recovering from a failed DFut. The minimum requirement
is to throw an error to the application if it tries to dereference
a failed DFut. We further provide an option for transparent
recovery, i.e. the system will recover a failed DFut’s value.

With futures but no distributed memory, if a process fails,
then we will lose the reply of any pending task on that process.
Assuming idempotence, this can be recovered through retries,
a common approach for pass-by-value RPC. For example,
in Figure 5a, the driver recovers by resubmitting add (a, b) .
Failure recovery is simple because all data is passed by value.

With distributed memory, however, tasks can also contain
arguments passed by reference. Therefore, a node failure can
cause the loss of an object value that is still referenced, as
b is in Figure 4b. A common approach to this problem is to
record each object’s lineage, or the subgraph that produced
the object, during runtime [17,30,56]. The system then walks
a lost object’s lineage and recursively reconstructs the object
and its dependencies through task re-execution. This approach
reduces the runtime overhead of logging, since the data itself
is not recorded, and the work that must be redone after a partial
failure, since objects cached in distributed memory do not
need to be recomputed. Still, achieving low run-time overhead
is difficult because the lineage itself must be recorded and
collected at run time and it must survive failures.

Note that we focus specifically on object recovery and, like

previous systems [34, 37, 56], assume idempotence for cor-
rectness. Thus, our techniques are directly applicable to idem-
potent functions and actors with read-only, checkpointable, or
transient state, as we evaluate in Figure 15c. Although it is not
our focus, these techniques may also be used in conjunction
with known recovery techniques for actor state [17,34] such
as recovery for nondeterministic execution [52].
Metadata requirements. In summary, during normal opera-
tion, the system must at minimum record (1) the location(s)
of each object’s value, so that reference holders can retrieve it,
and (2) whether the object is still referenced, for safe garbage
collection. For failure detection and recovery, the system must
further record, respectively, (3) the location of each pending
object, i.e. the task location, and (4) the object lineage.

The key question is where and when to record this system
metadata such that it is consistent' and fault-tolerant. By
consistent, we mean that the system metadata matches the

Unrelated to the more standard definition of replica consistency [50].



Master Lease Manager
def A() . 0bj Task Loc 0bj Task Loc Workerl
y = C(B()) . X | B() | W2 X | B() | W2 obj | Task
N % Y | cx) | w3 Y | cx) | w3 x | 8y’
. N ‘ — ——
OO S oo [
- -»Task submission @ @ @ §| 7,@
—» Data dependency WL W2 W3 Wi W2 W3 - o
(b) Centralized (c) Distributed
(a) Application master leases (d) Ownership

Figure 6: Distributed futures systems. (a) An application. (b) Master
manages metadata and object failures. (¢) Workers write metadata
asynchronously, coordinate failure handling with leases. (d) Workers
manage metadata. Worker 1 handles failures for workers 2 and 3.
Worker 1 failure is handled by A’s owner elsewhere in the cluster.

current physical state of the cluster. By fault-tolerant, we mean
that the metadata should survive individual node failures.

In some cases, it is safe for metadata to be asynchronously
updated, i.e. there is a transient mismatch between the system
metadata and the system state. For example, the system may
transiently believe that an object x is still on node A even
though it has been removed. This is safe because a reference
holder can resolve the inconsistency by asking A if it has x.

On the other hand, metadata needed for failure handling
should ideally be synchronously updated. For example, the
metadata should never say that a task 7" is on node A when
it is really on node B. In particular, if node A then fails, the
system would incorrectly conclude that 7" has failed. As we
will see next, synchrony simplifies fault tolerance but can add
significant runtime overhead if done naively.

3.2 Existing solutions

Centralized master. Failure handling is simple with a syn-
chronously updated centralized master, but this design can
also add significant runtime overhead. For example, failure
detection requires that the master record a task’s scheduled
location before dispatch (Figure 6b). Similarly, the master
must record every new reference before it can be used. This
makes the master a bottleneck for scalability and latency.

The master can be sharded for scalability, but this can com-
plicate operations that coordinate multiple objects, such as
garbage collection and lineage reconstruction. Also, the la-
tency overhead is fundamental. Each task invocation must
first contact the master, adding at minimum one round-trip
to the critical path of execution, even without replicating the
metadata for fault tolerance. This overhead can be detrimental
when the task itself is milliseconds long, and especially so if
the return value is small enough to be passed by value. Small
values may be stored in the master directly as an optimization,
but still require 1 RTT for retrieval [38].
Distributed leases. Decentralization can remove such bot-
tlenecks, but often leads to complex coordination schemes.
One approach is to use distributed leases [19]. This is similar
to a centralized master that is updated asynchronously.

As an example, consider asynchronous task location up-

dates (Figure 6¢). To account for a possibly stale master, the
worker nodes must coordinate to detect task failures, in this
case using leases. Each worker node acquires a lease for each
locally queued task and repeatedly renews the lease until the
task has finished. For example, in Figure 6¢, worker 3 can
detect a failure of B by waiting for worker 2’s lease to expire.

This design is horizontally scalable through sharding and
reduces task latency, since metadata is written asynchronously.
However, the reliance on timing to reconcile system state
can slow recovery (Figure 14). Furthermore, this method
of decentralization introduces a new problem: the workers
must also coordinate on who should recover an object, i.e.
re-execute the creating task. This is trivial in the centralized
scheme, since the master coordinates all recovery operations.

3.3 Our solution: Ownership

The key insight in our work is to “shard” the centralized mas-
ter, for scalability, but to do so based on the application struc-
ture, for low run-time overhead and simple failure handling.
In ownership, the worker that calls a task stores the meta-
data related to the returned DFut. Like a centralized master, it
coordinates operations such as task scheduling, to ensure it
knows the task location, and garbage collection. For example,
in Figure 6d, worker 1 owns X and Y.

The reason for choosing the task’s caller as the owner is that
in general, it is the worker that accesses the metadata most
frequently. The caller is involved in the initial creation of
the DFut, via task invocation, as well as the creation of other
references, by passing the DFut to other RPCs. Thus, task
invocation latency is minimal because the scheduled location
is written locally. Similarly, if the DFut stays in the owner’s
scope, the overhead of garbage collection is low because the
DFut’s reference count can be updated locally when the owner
passes the DFut to another RPC. These overheads can be
further reduced for small objects, which can be passed by
value as if without distributed memory (see Section 4.2).

Of course, if all tasks are submitted by a single driver,
as in BSP programs, ownership will not scale beyond the
driver’s throughput. Nor indeed will any system for dynamic
tasks. However, with ownership, the application can scale
horizontally by distributing its control logic across multiple
nested tasks, as opposed to an application-agnostic method
such as consistent hashing (Figure 12¢). Furthermore, the
worker processes hold much of the system metadata. This
is in contrast to previous solutions that push all metadata
into the system’s centralized or per-node processes, limiting
the vertical scalability of a single node with many worker
processes (Figure 12).

However, there are problems that are simpler to solve with
a fully centralized design, assuming sufficient performance:
First-class futures. First-class futures (Section 2) allow non-
owning processes to reference a DFut. While many applica-
tions can be written without first-class futures (Figure 3b),



they are sometimes essential for performance. For example,
the model serving application in Figure 3a uses first-class
futures to delegate task invocation to a nested task, without
having to dereference and copy the arguments.

A first-class DFut may leave the owner’s scope, so we must

account for this during garbage collection. We avoid centraliz-
ing the reference count at the owner, as this would defeat the
purpose of delegation. Instead, we use a distributed hierarchi-
cal reference counting protocol (Section 4.2). Each borrower
stores a local reference count for the DFut on behalf of the
owner (Table 2) and notifies the owner when the local refer-
ence count reaches zero. The owner decides when the object
is safe to reclaim. We use a reference counting approach as
opposed to tracing [42] to avoid global pauses.
Owner recovery. If a worker fails, then we will also lose its
owned metadata. For transparent recovery, the system must
recover the worker’s state on a new process and reassociate
state related to the previously owned DFuts, including any
copies of the value, reference holders, and pending tasks.

We choose a minimal approach that guarantees progress, at
the potential cost of additional re-execution on a failure: we
fate share the object and any reference holders with the owner,
then use lineage reconstruction to recover the object and any
of the owner’s fate-shared children tasks (Section 4.3). This
method adds minimal run-time overhead and is correct, i.e.
the application will recover to a previous state and the system
guarantees against resource leakage. A future extension is to
persist the owner’s state to minimize recovery time at the cost
of additional recovery complexity and run-time overhead.

4 Ownership Design

Each node in the cluster hosts one to many workers (usually
one per core), one scheduler, and one object store (Figure 7).
These processes implement future resolution, resource man-
agement, and distributed memory, respectively. Each node
and worker process is assigned a unique ID.

Workers are responsible for the resolution, reference count-
ing, and failure handling of distributed futures. Each worker
executes one task at a time and can invoke other tasks. The
root task is executed by the “driver”.

Each task has a unique TaskID that is a hash of the parent
task’s ID and the number of tasks invoked by the parent task so
far. The root TaskID is assigned randomly. Each task may re-
turn multiple objects, each of which is assigned an ObjectID
that concatenates the TaskID and the object’s index. A DFut
is a tuple of the ObjectID and the owner’s address (Owner).

The worker stores one record per future that it has in scope
in its local ownership table (Table 2). A DFut borrower
records a subset of these fields (* in Table 2). When a DFut is
passed as an argument to a task, the system implicitly resolves
the future’s value, and the executing worker stores only the
ID, Owner, and Value for the task duration. The worker also
caches the owner’s stored Locations.

Field Value

*1D The ObjectID. Also used as a distributed memory key.
*Owner Address of the owner (IP address, port, WorkerID).

*Value (1) Empty if not yet computed, (2) Pointer if in distributed
memory, or (3) Inlined value, for small objects (Section 4.2).
*References | A list of reference holders: Number of dependent tasks and a
list of borrower addresses (Section 4.2 and appendix A).
Task Specification for the creating task. Includes the ObjectIDs
and Owners of any DFuts passed as arguments.

If Value is empty, the location of the task. If Value is a
pointer to distributed memory, then the locations of the object.

Table 2: Ownership table. The owner stores all fields. A bor-
rower (Section 3.2) only stores fields indicated by the *.

Locations

Worker @ Worker a Worker
Future
resolution | || Obj | Owner | ...
(Ownership) I‘ c
| b
Resource Scheduler F w Scheduler M
management [E
Distributed Object Store |[4—»| Object Store ‘
memory | Node ‘ ‘

Figure 7: Architecture and protocol overview. (a) Task execution.
(b) Local task scheduling. (¢) Remote task scheduling. (d) Object
transfer. (e) Task output storage and input retrieval. Ownership layer
manages distributed memory garbage collection and recovery. (f)
Scheduler fetches objects in distributed memory to fulfill task de-
pendencies.

An actor is a stateful task that can be invoked multiple times.
Like objects, an actor is created through task invocation and
owned by the caller. The ownership table is also used to locate
and manage actors: the Location is the actor’s address. Like
a DFut, an ARef (an actor reference) is a tuple of the ID and
Owner and can be passed as a first-class value to other tasks.

A worker requests resources from the scheduling layer to
determine task placement (Section 4.1). We assume a de-
centralized scheduler for scalability: each scheduler manages
local resources, can serve requests from remote workers, and
can redirect a worker to a remote scheduler.

The distributed memory layer (Section 4.2) consists of
an immutable distributed object store (Figure 7d) with
Locations stored at the owner. The Locations are updated
asynchronously. The object store uses shared memory to re-
duce copies between reference holders on the same node.

Workers store, retrieve, reclaim, and recover large objects
in distributed memory (Figure 7f). The scheduling layer sends
requests to distributed memory to fetch objects between nodes
according to worker requests (Figure 7g).

4.1 Task scheduling

We describe how the owner coordinates task scheduling. At
a high level, the owner dispatches each task to a location
chosen by the distributed scheduler. This ensures that the task
location in the ownership table is updated synchronously with
dispatch. We assume an abstract scheduling policy that takes



Master Lease manager Node L. RTTs R. RTTs

0bj | Task Loc‘ 0bj | Task | Loc v Master L. 1 1

X |BO) |N2[3 X N2 ) R. 1 1

Clpglel | ® ‘

Obj |Task |Loc ‘ Leases L. 1 0

p| Scheduler ‘ lScheduIer L Scheduler ‘ lScheduIer}- 7 lcaol@ Worker R. 1 05

Worker@‘ Worker Worker@‘ Worker }‘ Worker Owner- L. 05o0rl.5 0
[Node 1 Node 2 Node 1 Node 2 Jde 2 ship R. Oorl 0.50r 1.5

(a) (b) (d) (e)

Figure 8: Task scheduling and the method of recording a task’s location for the program in Figure 6a. (a) Centralized master. (b) Distributed
leases. (¢) Scheduling with ownership. (1-2) Local scheduler redirects owner to node 2. (3) Update task location. (4-5) Remote scheduler grants
worker lease. (6) Task dispatch. (d) Direct scheduling by the owner, using the worker and resources leased from node 2 in (c). (e) Length of
critical path of local (L) and remote (R) task execution, in terms of local (L) and remote (R) RTTs.

in resource requests and returns the ID of a node where the
resources should be allocated. The policy may also update its
decision, e.g., due to changes in resource availability.

Figure 8c shows the protocol to dispatch a task. Upon task
invocation, the caller, i.e. the owner of the returned DFut, first
requests resources from its local scheduler’. The request is
a tuple of the task’s required resources (e.g., {"CPU": 1})
and arguments in distributed memory. If the policy chooses
the local node, the scheduler accepts the request: it fetches
the arguments, allocates the resources, then leases a local
worker to the owner. Else, the scheduler rejects the request
and redirects the owner to the node chosen by the policy.

In both cases, the scheduler responds to the owner with the
new location: either the ID of the leased worker or the ID of
another node. The owner stores this new location in its local
ownership table before dispatching the task to that location.
If the request was granted, the owner sends the task directly
to the leased worker for execution; otherwise, it repeats the
protocol at the next scheduler.

Thus, the owner always dispatches the task to its next lo-
cation, ensuring that the task’s pending Location (Table 2)
is synchronously updated. This also allows the owner to by-
pass the scheduler by dispatching a task directly to an already
leased worker, if the task’s resource requirements are met. For
example, in Figure 8d, worker 1 reuses the resources leased
from node 2 in Figure 8c to execute C. The owner returns the
lease after a configurable expiration time, or when it has no
more tasks to dispatch. We currently do not reuse resources for
tasks with different distributed memory dependencies, since
these are fetched by the scheduler. We leave other policies for
lease revocation and worker reuse for future work.

The worst-case number of RTTs before a task executes is
higher than in previous solutions because each policy decision
is returned to the owner (Figure 8e). However, the throughput
of previous solutions is limited (Figure 12) because they can-
not support direct worker-to-worker scheduling (Figure 8d).
This is because workers do not store system state, and thus all
tasks must be routed through the master or per-node scheduler
to update the task location (Figures 8a and 8b).

Actor scheduling. The system schedules actor constructor
tasks much like normal tasks. After completion, however, the

2The owner can also choose a remote scheduler, e.g., for data locality.

owner holds the worker’s lease until the actor is no longer
referenced (Section 4.2) and the worker can only execute
actor tasks submitted through a corresponding ARef.

A caller requests the actor’s location from the owner us-
ing the ARef’s Owner field. The location can be cached and
requested again if the actor restarts (Section 4.3). The caller
can then dispatch tasks directly to the actor, as in Figure 8d,
since the resources are leased for the actor’s lifetime. For a
given caller, the actor executes tasks in the order submitted.

4.2 Memory management

Allocation. The distributed memory layer consists of a set
of object store nodes, with locations stored at the owner (Fig-
ures 9b to 9d). It exposes a key-value interface (Figure 9a).
The object store may replicate objects for efficiency but is not
required to handle recovery: if there are no copies of an object,
a Get call will block until a client (i.e. a worker) Creates the
object.

Small objects may be faster to copy than to pass through
distributed memory, which requires updating the object di-
rectory, fetching the object from a remote node, etc. Thus, at
object creation time, the system transparently chooses based
on size whether to pass by value or by reference.

Objects over a configurable threshold are stored in the
distributed object store (step 1, Figure 9b) and returned by
reference to the owner (step 2). This reduces the total number
of copies, at the cost of requiring at least one IPC to the
distributed object store for Get (steps 4-5, Figure 9c). Small
objects are returned by value to the owner (step 6, Figure 9c¢),
and each reference holder is given its own copy. This produces
more copies in return for faster dereferencing.

The initial copy of a large object is known as the primary.
This copy is pinned (step 1, Figure 9b) until the owner releases
the object (step 8, Figure 9d) or fails. This allows the object
store to treat additional capacity as an LRU cache without
having to consult the owners about which objects are safe
to evict. For example, the secondary copy of X created on
node 3 in Figure 9c is cached to reduce Get and recovery
time (Section 4.3) but can be evicted under memory pressure.
Dereferencing. The system dereferences a task’s DFut argu-
ments before execution. The task’s caller first waits for the
Value field in its local ownership table to be populated (Fig-



Operation

Semantics
Create (Ob3jID

Store an object. Worke
o, Value v) 5 Teen oz

Pin(ObjID o, NodeID |Pin o on loc until released.
loc)— bool Returns false if 1oc failed.
Release (ObjID o) Object o is safe to evict.

Get (ObjID o) —

Y
—— 1. Create(X) X
Get the object value. May |, , L Pin)  —

Value fetch copy from remote node.

(a) (b)

“Worker Worker Wor@ ‘H Worker ‘ Worker
X: N2 A
0 m ‘Obj val | Lod 8. Release(X)
Object Object -/ Object Object
X LB Store Store Lol 7 X 4 Store Store
4. Get(X)
Object H Y g
{5 Store
Node 2 Node 3 Node 1 Node 2 Node 3
© (d)

Figure 9: (a) Distributed memory store API, and (b-d) Memory management for the program in Figure 6a. (1-2) B returns a large object X in
distributed memory. The primary copy is pinned until all references have been deleted. (3) Worker 1 dispatches C once X is available. (4-5) Get
the value from distributed memory (location lookup not shown). (6) C returns a small object Y directly to the owner. (7-8) Object reclamation.

ure 9b), then copies the Value into the dispatched task descrip-
tion. The executing worker then copies the received Value
into its local table (Figure 9c). For large objects, the sent value
is a pointer to distributed memory, so the worker must also
call Get to retrieve the actual value (step 4, Figure 9c¢).

If the task’s caller is also the owner of its DFut arguments,

the above protocol is sufficient. If the task’s caller is bor-
rowing an argument, then it must populate the Value field
through a protocol with the owner. Upon receiving a DFut, the
borrower sends the associated Owner a request for the Value.
The owner replies with the Value (either the inlined value or
a pointer) once populated. The borrower populates its local
Value field by copying the reply.
Reclamation. The owner reclaims the object memory once
there are no more reference holders (Figure 9d) by deleting its
local Value field (step 7) and, if necessary, calling Release
on the distributed object store (step 8). An object’s reference
holders are tracked with a distributed reference count main-
tained by the owner and borrowers.

Each process with a DFut instance keeps a local count of
submitted tasks (References, Table 2). The task count is
incremented each time the process invokes a dependent task
and decremented when the task completes. Each process also
keeps a local set of the worker IDs of any borrowers that
it created, by passing the DFut as a first-class value. This
forms a tree of borrowers with the owner at the root (see
Appendix A). The owner releases the object once there are no
more submitted tasks or borrowers anywhere in the cluster.
Actors. Actors are reference-counted with the same protocol
used to track borrowers of a DFut. Once the set of reference
holders is empty, the owner of the actor reclaims the actor
resources by returning the worker lease (Section 4.1).

4.3 Failure recovery

The system guarantees that any reference holder will eventu-
ally be able to resolve the value in the presence of failures.

Failure detection. Failure notifications containing a worker
or node ID are published to all workers. Workers do not
exchange heartbeats; a worker failure is published by its local
scheduler. Node failure is detected by exchanging heartbeats
between nodes, and all workers fate-share with their node.

Upon receiving a node or worker failure notification, each
worker scans its local ownership table to detect a DFut failure.
A DFut is considered failed in two cases: 1) loss of an owned
object (Figure 10a), by comparing the Location field, or
2) loss of an owner (Figure 11a), by comparing the Owner
field. We discuss the handling for these two cases next, using
lineage reconstruction and fate sharing, respectively.

Note that a non-owner does not need to detect the loss of
an object. For example, in Figure 10a, node 2 fails just as
worker 3 receives C. When worker 3 looks up X at the owner,
it may not find any locations. From worker 3’s perspective,
this means that either node 2’s write to the directory was
delayed, or node 2 failed. Worker 3 does not need to decide
which it is; it simply waits for X’s owner to handle the failure.
Object recovery. The owner recovers a lost value through
lineage reconstruction. During execution, the owner records
the object’s lineage by storing each invoked Task in its own-
ership table (Table 2). Then, upon detecting a DFut failure,
the owner resubmits the corresponding task (Figure 10b). The
task’s arguments are recursively reconstructed, if needed.

Like previous systems [34,37,56], we can avoid lineage
reconstruction if other copies of a required object still exist.
Thus, when reconstructing an object, the owner will first try
to locate and designate a secondary copy as the new primary.
To increase the odds of finding a secondary copy, object recla-
mation (Section 4.2) is done lazily: the owner releases the
primary copy once there are no more reference holders, but
the copy is not evicted until there is memory pressure.

Often, the owner of an object will also own the objects in
its lineage (Section 5.2). Thus, upon failure, the owner can
locally determine the set of tasks to resubmit, with a recursive
lookup of the Task fields. In some cases, an object’s lineage
may also contain borrowed references. Then, the borrower
requests reconstruction from the owner.

The owner can delete the Task field once the task has
finished and all objects returned by reference will never be
reconstructed again. When a worker returns an object by
value, the owner can immediately delete the corresponding
Task field. This is safe because objects passed by value do
not require reconstruction (Section 3.1).

For an object passed by reference, the owner keeps a lineage
reference count to determine when to collect the Task. The



Worker @ Worker Worker
Obj |Task |Val |Loc Obj | 0. |val
X [ BQ) | *x | N2 Ob\get X | W1| *X
Stgke
Y [c(x) N3
X Object
Store
Node 1 ode 2 Node 3 Node 1

rker @ Worker Worker @ . Wak)er
\

0bj sk ‘\yLoc obj | 0. |val
. Object " Object
x| BOY*x | N2 store X | WL | *x Store
Y X) ‘\ N3
N Object Object
Store Store

de 1 Node 2 Node 3 Node 2 Node 3

(a) Failure detection. (b) Lineage reconstruction.

Figure 10: Object recovery.

count is incremented each time the DFut is passed to another
task and decremented when that Task is itself collected. The
owner collects a record after collecting both the Task and
Value (Section 4.2) fields. We also plan to support object
checkpointing to allow the lineage to be collected early.
Owner recovery. An owner failure can result in a “dangling
pointer”: a DFut that cannot be dereferenced. This can happen
if the object is simultaneously lost from distributed memory.
For example, C in Figure | 1a will hang if node 2 also fails.

We use fate sharing to ensure that the system can make
progress upon an owner’s failure. First, all resources held by
the owner and any reference holders are reclaimed. Specifi-
cally, upon notification of the owner’s failure, either the dis-
tributed object store frees the object (if it exists) or the schedul-
ing layer reclaims the worker lease (if the object is pending),
shown in Figure 11b. All reference holders, i.e. borrowers
and dependent tasks, also fate-share with the owner.

Then, to recover the fate-shared state, we rely on lineage
reconstruction. In particular, the task or actor that was exe-
cuting on the failed owner must itself have been owned by
another process. That process will eventually resubmit the
failed task. As the new owner re-executes, it will recreate its
previous state, with no system intervention needed. For ex-
ample, the owner of A in Figure 1 1a will eventually resubmit
A (Figure 11b), which will again submit B and C.

For correctness, we show that all previous reference holders
are recreated, with the address of the new owner. Consider task
T that computes the value of a DFut x. T initially executes
on worker W and re-executes on W’ during recovery. The
API (Section 2) gives three ways to create another reference
to x: (1) pass x as a task argument, (2) cast x to a SharedDFut
then pass as a task argument, and (3) return x from 7.

In the two former cases, the new reference holder must be
a child task of 7. In case (2), when x is passed as a first-class
value, the child task can create additional reference holders
by passing x again. All such reference holders are therefore
descendants of T. Then, when T re-executes on W/, W’ will
recreate 7”’s descendants.

T can also return x, which can be useful for returning a
child task’s result without dereferencing with get. Suppose T
returns x to its parent task P. Then, P’s worker becomes a bor-
rower and will fate-share with W. In this case, P is recovered
by its owner, and again submits 7 and receives x.

Thus, because any borrower of x must be a child or ancestor
of T, fate-sharing and re-execution guarantees that the bor-

(a) Failure detection. (b) Fate sharing.

Figure 11: Owner recovery.

rower will be recreated with W’ as the new owner. Note that
for actors, this requires that an actor not store borrowed DFut s
in its local state. Of course, this is only required for transparent
recovery; the application may also choose to handle failures
manually and rely on the system for failure detection only.
While fate-sharing and lineage reconstruction add minimal
run-time overhead, it is not suitable for all applications. In
particular, the application will fate-share with the driver. In
fact, this is the same failure model offered by some BSP
systems [3], which can be written as a distributed futures
program in which the driver submits all tasks. As shown by
these systems, this approach can be extended to reduce the re-
execution needed during recovery. We leave such extensions,
including application-level checkpointing (Section 5.2), and
persistence of the ownership table, for future work.
Actor recovery. Actor recovery is handled through the same
protocols. If an actor fails, its owner restarts the actor through
lineage reconstruction, i.e. resubmitting the constructor task.
If the owner fails, the actor and any ARef holders fate-share.
Unlike functions, actors have local state that may require
recovery. This is out of scope for this work, but is an interest-
ing future direction. Ownership provides the infrastructure to
manage and restart actors, while other methods can be layered
on top for transparent recovery of local state [17,34,52].

5 Evaluation

We study the following questions:

1. Under what scenarios is distributed futures beneficial
compared to pass-by-value RPC?

2. How does the ownership architecture compare against
existing solutions for distributed futures, in terms of
throughput, latency, and recovery time?

3. What benefits does ownership provide for applications
with dynamic, fine-grained parallelism?

We compare against three baselines: (1) a pass-by-value
model with futures but no distributed memory, similar to Fig-
ure 2c¢, (2) a decentralized lease-based system for distributed
futures (Ray v0.7), and (3) a centralized master for distributed
futures (Ray v0.7 modified to write to a centralized master
before task execution). All distributed futures systems use
sharded, unreplicated Redis for the global metadata store,
with asynchronous requests. All systems use the Ray dis-
tributed scheduler and (where applicable) distributed object
store. Ownership and pass-by-value use gRPC [2] for worker-



5 __ 200k 200k 200k 200k 30k
Qo
. Passby %ﬁ 150k 150k 150k 150k 20k
value 5% 100k 100k 100k 100k
% Leases  £8 5o ‘/‘/"—_‘—1‘ 50k 50k|,__4——+—+—+ 50k 10k
Centralized H 0L s ¢ 3 5¢| 0 -~ 0LE s " " . 0 ¥* X
—+— Ownership 20 40 60 80 100 20 40 60 80 100 20 40 60 80 100 20 40 60 80 100 935713 2 3

Worker nodes

(b) Small objects,
spread.

Worker nodes

(a) Small objects,
colocated.

(c) Large objects,
colocated.

Worker nodes Worker nodes # nested tasks

(d) Large objects,
spread.

(e) Single node,
nested tasks.

Figure 12: Throughput and scalability. (a-d) Task submission is divided across multiple intermediate drivers, either colocated on the m5.8xlarge
head node or spread with one m5.8xlarge node per driver. 1 intermediate driver is added per 5 worker nodes. Each task returns either a small
(short binary string) or large (1MB blob) object. (e) Scaling task submission using nested tasks and first-class distributed futures.

to-worker communication. All benchmarks schedule tasks to
predetermined nodes to reduce scheduling variation.

All experiments are run on AWS EC2. Global system meta-
data, such as an object directory, is hosted on the same node
as the driver, where applicable. Unless stated otherwise, this
“head node” is an m5.16xlarge instance. Other node configu-
ration is listed inline. All benchmark code is available at [53].

5.1 Microbenchmarks

Throughput and scalability. The driver submits one nested
task for every 5 worker nodes (m5.8xlarge). Each interme-
diate “driver” submits no-op tasks to its 5 worker nodes.
We report the total throughput of the leaf tasks, which re-
turn either a short string (Figures 12a and 12b) or a 1IMB
blob (Figures 12¢ and 12d). The drivers are either colo-
cated (Figures 12a and 12c) on the same m5.8xlarge node
as the root driver, or spread (Figures 12b and 12d), each on
its own m5.8xlarge node. We could not produce stable re-
sults for pass-by-value with large objects due to the lack of
backpressure in our implementation.

At <60 nodes, the centralized and lease-based architectures
achieve about the same throughput because the centralized
master is not yet a bottleneck. In general, ownership achieves
better throughput than either because it distributes some sys-
tem operations to the workers. In contrast, the baselines han-
dle all system operations in the global or per-node processes.

The gap between ownership and the baselines is more sig-
nificant with small return values (Figures 12a and 12b). For
these, ownership matches pass-by-value because small ob-
jects are returned directly to their owner. The baseline sys-
tems could implement a similar optimization, e.g., by inlining
small objects in the object directory (Section 4.2), but this
would still require at minimum one RPC per read.

When the drivers are spread (Figures 12b and 12d), owner-
ship and leases both scale linearly. Ownership scales better
than leases in Figure 12b because more work is offloaded
onto the worker processes. Ownership and leases achieve sim-
ilar throughput in Figure 12d, but the ownership system also
includes memory safety (Section 4.2). The centralized design
(2 shards) scales linearly to ~60 nodes. Adding more shards
would raise this threshold, but only by a constant amount.

When the drivers are colocated (Figures 12a and 12c¢), both

baselines flatline because of a centralized bottleneck: the
scheduler on the drivers’ node. Ownership also shows this,
but there is less scheduler load overall because the drivers
reuse resources for multiple tasks (Section 4.1). A comparable
optimization for the baselines would require each driver to
batch task submission, at the cost of latency. Throughput for
ownership is lower in Figure 12c than in Figure 12a due to
the overhead of garbage collection.

Thus, because ownership decentralizes system state among
the workers, it can achieve vertical (Figures 12a and 12c¢) and
horizontal (Figures 12b and 12d) scalability. Also, it matches
the performance of pass-by-value RPC while enabling new
workloads through distributed memory (Section 2.2).

Scaling through borrowing. We show how first-class fu-
tures enable delegation. Figure 12¢ shows the task throughput
for an application that submits 100K no-op tasks that each
depend on the same 1MB object created by the driver. The
tasks are submitted either by the driver (x=0) or by a number
of nested tasks that each borrow a reference to the driver’s
object. All workers are colocated on an m5.16xlarge node.

For all systems, the throughput with a single borrower (x=1)
is about the same as when the driver submits all tasks directly
(x=0). Distributing task submission across multiple borrowers
results in a 2x improvement for ownership and negligible
improvement for the baselines. Thus, with ownership, an ap-
plication can scale past the task dispatch throughput of a
single worker by delegating to nested tasks. This is due to (1)
support for first-class distributed futures, and (2) the hierarchi-
cal distributed reference counting protocol, which distributes
an object’s reference count among its borrowers instead of
centralizing it at the owner (Section 4.2). In contrast, the
baselines would require additional nodes to scale.

Latency. Figure 13 measures task latency with a single
worker, hosted either on the same node as the driver (“lo-
cal”), or on a separate m5.16xlarge node (“remote”). The
driver submits 3k tasks that each take the same 1MB object as
an argument and that immediately returns a short string. We
report the average duration before each task starts execution.
First, distributed memory achieves better latency than pass-
by-value in all cases because these systems avoid unnecessary
copies of the task argument from the driver to the worker.
Second, compared to centralized and leases, ownership
achieves on average 1.6x lower latency. This is due to (1)



Pass by
value

Centralized

Bl Leases
B Ownership

local local remote remote
actors tasks actors tasks

Figure 13: Task latency. Local means that the worker and driver are
on the same node. Error bars for standard deviation (across 3k tasks).

10
5

Pass by value

Pass by value;
failure

Leases
Leases;

”‘%‘ failure
e * 1iges

< =¥ > Oyvnership;
0 5600 1000 0 560 1000 ¢ failure
Task duration (ms) Task duration (ms)

RS

fury

Relative time (log)
w5

(a) Small objects. (b) Large objects.
Figure 14: Total run time (log-scale), relative to ownership without
failures. The application is a chain of dependent tasks that execute
on one node. Each task sleeps for the duration on the x-axis (total
10s) and returns either (a) a short binary string, or (b) a 10MB blob.

the ability to write metadata locally at the owner instead of a
remote process, and (2) the ability to reuse leased resources,
in many cases bypassing the scheduling layer (Section 4.1).
Recovery. This benchmark submits a chain of tasks that
execute on a remote m5.xlarge node. Each task depends on
the previous, sleeps for the time on the x-axis (total duration
10s), and returns either a short binary string (Figure 14a) or a
10MB blob (Figure 14b). We report the run time relative to
ownership without failures. To test recovery, the worker node
is killed and restarted Ss into the job (1s heartbeat timeout).
We do not include centralized due to implementation effort.
Normal run time for leases is up to 1.18x faster than own-
ership, but recovery time is more than double, worse than
restarting the application. This is because a task’s lease must
expire before it can be re-executed, adding delay for short
tasks. The recovery delay for longer tasks is also high because
the implementation (Ray v0.7) repeatedly doubles a lease’s
expiration time to reduce renewal overhead. A shorter lease
interval would reduce recovery delay but can be unstable.
Ownership recovers within 2 x the normal run time. Re-
covery time is the same as pass-by-value for small objects
because only in-flight tasks are re-executed (Figure 14a). For
large objects (Figure 14b), ownership achieves better normal
run time than pass-by-value because arguments are passed by
reference; the gap decreases as task execution dominates.
Thus, ownership can achieve the same or better normal
run-time performance as leases and pass-by-value, while also
guaranteeing timely recovery through lineage reconstruction.

5.2 End-to-end applications

Model serving. We implement Figure 3a. Figure 15a shows
the latency on 4 p3.16xlarge nodes, each with 1 Router and 8
ResNet-50 [23] Models. We use a GPU batch size of 16 and

generate 2300 requests/s. Ownership and centralized achieve
the same median latency (54ms), but the tail latency for cen-
tralized is 9 higher (1s vs. 108ms). We also show the utility
of first-class distributed futures: in “-borrow”, the Router re-
ceives the image values and must copy these to the Model. As
expected, the Router is a bottleneck (p50=80ms, p100=3.2s).
Online video processing. We implement Figure 3b with 60
concurrent videos. The tasks for each stream are executed on
an m5.xlarge “worker” node (1 per stream) and submitted by a
driver task on a separate m5.xlarge “owner” node. Each owner
node hosts 4 drivers. Each video source uses an actor to hold
frame-to-frame decoder state. However, tasks are idempotent:
a previous frame may be reread with some latency penalty.
We use a YouTube video with a frame rate of 29 frames/s and
aradius of 1s for the moving average.

Figure 15b shows latency without failures. All systems
achieve similar median latency (~65ms), but leases and cen-
tralized have a long tail (1208ms and 1923ms, respectively).
Figure 15c¢ shows latency during an injected failure, 5s after
the start, of the Decoder actor (Figure 3b). Lease-based re-
covery is slow because the decoder actor must replay all tasks,
and each task accumulates overhead from lease expiration.
Checkpointing the actor was infeasible because the leases
implementation does not safely garbage-collect lineage.

Figure 15c also shows different failure scenarios for own-
ership, with a failure after 10s. The owner uses lineage re-
construction to recover quickly from a worker failure (1.9s in
O;WF). Owner recovery is slower because the failed owner
must re-execute from the beginning (8.8s in O;0F). To bound
re-execution, we use application-level checkpoints (O+CP,
checkpoints to a remote Redis instance once per second).
Each checkpoint includes all intermediate state needed to
transform the given frame, such as the cumulative sum so
far (Figure 3b). When the sink receives the transformed frame,
it “commits” the checkpoint by writing the frame’s index to
Redis. This results in negligible overhead (O vs. O+CP) and
faster recovery (1.1s in O+CP;OF).

6 Related Work

Distributed futures. Several systems [4,34,37,45,48,52]
have implemented a distributed futures model. Most [37,45]
use a centralized master (Section 3.2). In contrast, ownership
is a decentralized design that stores system state directly in the
workers that invoke the tasks. Ray [34] shards the centralized
state, but must still write to the centralized store before task
execution and does not support automatic memory manage-
ment. Lineage stash [52] is a complementary technique for
recovering nondeterministic execution; ownership provides
infrastructure for failure detection and memory management.
Other dataflow systems. Distributed data-parallel systems
provide high-throughput batch computation and transparent
data recovery [15,25,54,56]. Many of our techniques build on



Lo 1.00 -7 107z — L0 e e =
W — = Ownership -borrow 0.99 g r — = Leases T =— = L; WF O; OF
505 Centralized 82? ,¢’ 0.5 Centralized 0.951 s O e O+CP

—— Ownership 0.96 ’z' =—— Ownership 4 . O;WF =—— O+CP; OF
0.0 . Z. 0.0 X
0 1000 2000 3000 0 95O 1000 2000 3000 0 1000 2000 0.0 0 10 20
Latency (ms) Latency (ms) Latency (ms) Latency (s)
@ (b) ©

Figure 15: End-to-end benchmarks. (a) Image classification latency (right is p95-p100). (b) Online video stabilization latency. (¢) Online video
stabilization latency with failures (starting at p90). L=leases; O=ownership; CP=checkpointing; WF=worker failure; OF=owner failure.

these systems, in particular the use of distributed memory [25,
56] and lineage re-execution [15,25,54,56]. Indeed, a data-
parallel program is equivalent to a distributed futures program
with no nested functions.

Most distributed data-parallel systems [15,25,54,56] em-
ploy some form of centralized master, a bottleneck for appli-
cations with fine-grained tasks [32,44,51]. Naiad [35,36] and
Canary [44] support fine-grained tasks but, like other data-
parallel systems, implement a static task graph, i.e. all tasks
must be specified upfront. In contrast, distributed futures are
an extension of RPC, which allows tasks to be dynamically in-
voked. Nimbus [32] supports both fine-grained and dynamic
tasks with a centralized controller by leveraging execution
templates for iterative computations. In contrast, ownership
distributes the control plane and schedules tasks one at a time.
These approaches are complementary; an interesting future
direction is to apply execution templates to distributed futures.

Actor systems. Distributed futures are compatible with the
actor model [7,24]. Other actor frameworks [1, 12] already
use futures for asynchrony, but with pass-by-value semantics,
making it expensive to process large data. Actors can be
extended with distributed memory to enable pass-by-reference
semantics. Since distributed memory is immutable, it does
not violate the condition of no shared state.

Our fault tolerance model is inspired by supervision in
actor systems [7]. In this model, a supervisor actor delegates
work to its children actors and is responsible for handling
any failures among its children. By default, an actor also fate-
shares with its supervisor. Our contribution is in extending
the supervision model to objects and object recovery.

Parallel programming systems. MPI [18] exposes a low-
level pass-by-value interface. In contrast, distributed futures
supports pass-by-reference and heterogenerous processes.

Distributed futures are more similar in interface to other
parallel programming runtimes [10, 14,21,31,47]: the user
annotates a sequential program to designate procedures that
can be executed in parallel. Out of these systems, ownership
is perhaps most similar to Legion [10], in that the developer
specifies a task hierarchy that dictates system behavior. Our
contribution is in identifying and addressing the challenges
of failure detection and recovery for distributed futures.

Distributed memory. Distributed shared memory [40] pro-
vides the illusion of a single globally shared and mutable
address space across a physically distributed system. Trans-
parency has historically been difficult to achieve without
adding exorbitant runtime overhead. Mutability makes con-

sistency a major problem [11,26,28,40], and fault tolerance
has never been satisfactorily addressed [40].

More recent distributed memory systems [6,9, 16,27,41]
implement a higher-level key-value store interface. Most tar-
get a combination of performance, consistency, and durabil-
ity. Similar to our use of distributed memory (Section 4.2),
in-memory data replicas are used to improve durability and
recovery time. Indeed, many of these systems could likely be
used in place of our distributed memory subsystem.

However, the requirements of our distributed memory sub-
system are minimal compared to previous work, e.g., dura-
bility is only an optimization. This is because we target an
even higher-level interface that integrates directly with the
programming language: unlike a key, a DFut can be used to
express rich application semantics to the system, such as an
RPC’s data dependencies. Also, like previous data processing
systems [15,37,56], data is immutable. Thus, fine-grained
mutations are expensive, but consistency is not a problem.

7 Discussion

Ownership is the basis of the Ray architecture in v1.0+ [5], im-
plemented in ~14k C++ LoC. Previously, Ray used a sharded
global metadata store [34]. There were two problems with
this approach: (1) latency, and (2) worker nodes still had to
coordinate for operations such as failure detection. Ray v0.7
introduced leases (Section 3.2), which solved the latency prob-
lem but not coordination. It became impractical to introduce
distributed protocols involving multiple objects, such as for
garbage collection. We designed ownership for this purpose.

While transparent recovery is an explicit goal of this paper,
it is not the only benefit of ownership. Anecdotally, the two
main benefits of ownership for Ray users are performance and
reliability. In particular, reliability includes correct and timely
failure detection and garbage collection. Notably, ownership-
based transparent recovery is not yet widely used.

We believe that this is due to: (1) applications having cus-
tom recovery requirements that cannot be met with lineage
reconstruction alone, and (2) the cost of transparent recovery.
Thus, one design goal was to ensure that only applications
that needed transparent recovery would have to pay the cost.
Ownership is a first step towards this: it provides reliability to
all applications and transparent object recovery as an option.

In the future, we hope to extend this work to support a
spectrum of application recovery requirements. For example,
we could extend ownership with options to recover actor state.



Acknowledgements

We thank our anonymous reviewers and our shepherd Ryan
Huang for their insightful feedback. We also thank Alvin
Cheung, Michael Whittaker, Joe Hellerstein, and many others
at the RISELab for their helpful discussion and comments.
In addition to NSF CISE Expeditions Award CCF-1730628,
this research is supported by gifts from Alibaba Group, Ama-
zon Web Services, Ant Group, CapitalOne, Ericsson, Face-
book, Futurewei, Google, Intel, Microsoft, Nvidia, Scotiabank,
Splunk, and VMware.

References
[1] Akka. https://akka.io/.
[2] gRPC. https://grpc.io.

[3] Improved Fault-tolerance and Zero Data Loss in Apache
Spark Streaming. https://databricks.com/blog/
2015/01/15/improved-driver-fault-tolerance-
and-zero-data-loss-in-spark-streaming.html.

[4] PyTorch - Remote Reference Protocol. https://
pytorch.org/docs/stable/notes/rref.html.

[5] Ray v1.0. https://github.com/ray-project/ray/
releases/tag/ray-1.0.0.

[6] David G Andersen, Jason Franklin, Michael Kaminsky,
Amar Phanishayee, Lawrence Tan, and Vijay Vasudevan.
Fawn: A fast array of wimpy nodes. In Proceedings
of the ACM SIGOPS 22nd symposium on Operating
systems principles, pages 1-14, 2009.

[7] Joe Armstrong. Making reliable distributed systems in
the presence of software errors. PhD thesis, Mikroelek-
tronik och informationsteknik, 2003.

[8] Henry C Baker Jr and Carl Hewitt. The incremental
garbage collection of processes. ACM SIGART Bulletin,
(64):55-59, 1977.

[9] Mahesh Balakrishnan, Dahlia Malkhi, Vijayan Prab-
hakaran, Ted Wobbler, Michael Wei, and John D Davis.
{CORFU}: A shared log design for flash clusters. In
Presented as part of the 9th {USENIX} Symposium
on Networked Systems Design and Implementation
({NSDI} 12), pages 1-14, 2012.

[10] Michael Bauer, Sean Treichler, Elliott Slaughter, and
Alex Aiken. Legion: Expressing locality and indepen-
dence with logical regions. In SC’12: Proceedings of the
International Conference on High Performance Com-
puting, Networking, Storage and Analysis, pages 1-11.
IEEE, 2012.

[11] John K Bennett, John B Carter, and Willy Zwaenepoel.
Munin: Distributed shared memory based on type-
specific memory coherence. In Proceedings of the sec-
ond ACM SIGPLAN symposium on Principles & prac-
tice of parallel programming, pages 168—176, 1990.

[12] Phil Bernstein, Sergey Bykov, Alan Geller, Gabriel Kliot,
and Jorgen Thelin. Orleans: Distributed virtual actors
for programmability and scalability. Technical Report
MSR-TR-2014-41, March 2014.

[13] Andrew D Birrell and Bruce Jay Nelson. Implementing
remote procedure calls. ACM Transactions on Computer
Systems (TOCS), 2(1):39-59, 1984.

[14] Robert D Blumofe, Christopher F Joerg, Bradley C Kusz-
maul, Charles E Leiserson, Keith H Randall, and Yuli
Zhou. Cilk: An efficient multithreaded runtime system.
Journal of parallel and distributed computing, 37(1):55—
69, 1996.

[15] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Sim-
plified data processing on large clusters. Commun. ACM,
51(1):107-113, January 2008.

[16] Aleksandar Dragojevi¢, Dushyanth Narayanan, Miguel
Castro, and Orion Hodson. Farm: Fast remote memory.
In /1th {USENIX} Symposium on Networked Systems
Design and Implementation ({NSDI} 14), pages 401—
414, 2014.

[17] Elmootazbellah Nabil Elnozahy, Lorenzo Alvisi, Yi-Min
Wang, and David B Johnson. A survey of rollback-
recovery protocols in message-passing systems. ACM
Computing Surveys (CSUR), 34(3):375—-408, 2002.

[18] Edgar Gabriel, Graham E. Fagg, George Bosilca,
Thara Angskun, Jack J. Dongarra, Jeffrey M. Squyres,
Vishal Sahay, Prabhanjan Kambadur, Brian Barrett, An-
drew Lumsdaine, Ralph H. Castain, David J. Daniel,
Richard L. Graham, and Timothy S. Woodall. Open
MPI: Goals, concept, and design of a next generation
MPI implementation. In Proceedings, 11th European
PVM/MPI Users’ Group Meeting, pages 97-104, Bu-
dapest, Hungary, September 2004.

[19] Cary Gray and David Cheriton. Leases: An efficient
fault-tolerant mechanism for distributed file cache con-
sistency. ACM SIGOPS Operating Systems Review,
23(5):202-210, 1989.

[20] Arpan Gujarati, Reza Karimi, Safya Alzayat, Wei Hao,
Antoine Kaufmann, Ymir Vigfusson, and Jonathan
Mace. Serving dnns like clockwork: Performance pre-
dictability from the bottom up. In /4th {USENIX}
Symposium on Operating Systems Design and Imple-
mentation ({OSDI} 20), pages 443-462, 2020.


https://akka.io/
https://grpc.io
https://databricks.com/blog/2015/01/15/improved-driver-fault-tolerance-and-zero-data-loss-in-spark-streaming.html
https://databricks.com/blog/2015/01/15/improved-driver-fault-tolerance-and-zero-data-loss-in-spark-streaming.html
https://databricks.com/blog/2015/01/15/improved-driver-fault-tolerance-and-zero-data-loss-in-spark-streaming.html
https://pytorch.org/docs/stable/notes/rref.html
https://pytorch.org/docs/stable/notes/rref.html
https://github.com/ray-project/ray/releases/tag/ray-1.0.0
https://github.com/ray-project/ray/releases/tag/ray-1.0.0

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

Robert H Halstead Jr. Multilisp: A language for concur-
rent symbolic computation. ACM Transactions on Pro-
gramming Languages and Systems (TOPLAS), 7(4):501—
538, 1985.

Brandon Haynes, Amrita Mazumdar, Armin Alaghi,
Magdalena Balazinska, Luis Ceze, and Alvin Cheung.
Lightdb: A DBMS for virtual reality video. Proc. VLDB
Endow., 11(10):1192-1205, 2018.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 770-778, 2016.

Carl Hewitt, Peter Bishop, and Richard Steiger. A uni-
versal modular actor formalism for artificial intelligence.
In Proceedings of the 3rd International Joint Conference
on Artificial Intelligence, IJICAI’'73, page 235-245, San
Francisco, CA, USA, 1973. Morgan Kaufmann Publish-
ers Inc.

Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell,
and Dennis Fetterly. Dryad: Distributed data-parallel
programs from sequential building blocks. In Proceed-
ings of the 2nd ACM SIGOPS/EuroSys European Con-
ference on Computer Systems 2007, EuroSys *07, pages
59-72, New York, NY, USA, 2007. ACM.

Pete Keleher, Alan L Cox, Sandhya Dwarkadas, and
Willy Zwaenepoel. Treadmarks: Distributed shared
memory on standard workstations and operating sys-
tems. Distributed Shared Memory: Concepts and Sys-
tems, pages 211-227, 1994.

Avinash Lakshman and Prashant Malik. Cassandra: a
decentralized structured storage system. ACM SIGOPS
Operating Systems Review, 44(2):35-40, 2010.

Kai Li. Ivy: A shared virtual memory system for parallel
computing. ICPP (2), 88:94, 1988.

Barbara Liskov and Liuba Shrira. Promises: Linguistic
support for efficient asynchronous procedure calls in
distributed systems. ACM SIGPLAN Notices, 23(7):260—
267, 1988.

Nirmesh Malviya, Ariel Weisberg, Samuel Madden, and
Michael Stonebraker. Rethinking main memory oltp
recovery. In 2014 IEEE 30th International Conference
on Data Engineering, pages 604-615. IEEE, 2014.

Simon Marlow. Parallel and concurrent programming
in Haskell: Techniques for multicore and multithreaded
programming. " O’Reilly Media, Inc.", 2013.

(32]

(33]

[34]

(35]

[36]

(37]

(38]

[39]

[40]

(41]

Omid Mashayekhi, Hang Qu, Chinmayee Shah, and
Philip Levis. Execution templates: Caching con-
trol plane decisions for strong scaling of data analyt-
ics. In 2017 {USENIX} Annual Technical Conference
({USENIX}{ATC} 17), pages 513-526, 2017.

Luc Moreau. Hierarchical distributed reference count-
ing. In Proceedings of the Ist international symposium
on Memory management, pages 57-67, 1998.

Philipp Moritz, Robert Nishihara, Stephanie Wang,
Alexey Tumanov, Richard Liaw, Eric Liang, Melih Eli-
bol, Zongheng Yang, William Paul, Michael I. Jordan,
and Ion Stoica. Ray: A distributed framework for emerg-
ing Al applications. In 13th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
18), Carlsbad, CA, 2018. USENIX Association.

Derek G. Murray, Frank McSherry, Rebecca Isaacs,
Michael Isard, Paul Barham, and Martin Abadi. Na-
iad: A timely dataflow system. In Proceedings of the
Twenty-Fourth ACM Symposium on Operating Systems
Principles, SOSP * 13, pages 439-455, New York, NY,
USA, 2013. ACM.

Derek G. Murray, Frank McSherry, Michael Isard, Re-
becca Isaacs, Paul Barham, and Martin Abadi. Incre-
mental, iterative data processing with timely dataflow.
Commun. ACM, 59(10):75-83, September 2016.

Derek G. Murray, Malte Schwarzkopf, Christopher
Smowton, Steven Smith, Anil Madhavapeddy, and
Steven Hand. CIEL: A universal execution engine for
distributed data-flow computing. In Proceedings of the
8th USENIX Conference on Networked Systems Design
and Implementation, NSDI'11, pages 113-126, Berke-
ley, CA, USA, 2011. USENIX Association.

D.G. Murray. A Distributed Execution Engine Sup-
porting Data-dependent Control Flow. University of
Cambridge, 2012.

Robert Nishihara, Philipp Moritz, Stephanie Wang,
Alexey Tumanov, William Paul, Johann Schleier-Smith,
Richard Liaw, Mehrdad Niknami, Michael 1. Jordan,
and Ion Stoica. Real-time machine learning: The miss-
ing pieces. In Workshop on Hot Topics in Operating
Systems, 2017.

B. Nitzberg and V. Lo. Distributed shared memory: a
survey of issues and algorithms. Computer, 24(8):52—-60,
1991.

John Ousterhout, Arjun Gopalan, Ashish Gupta, Ankita
Kejriwal, Collin Lee, Behnam Montazeri, Diego On-
garo, Seo Jin Park, Henry Qin, Mendel Rosenblum, et al.
The RAMCloud storage system. ACM Transactions on
Computer Systems (TOCS), 33(3):7, 2015.



[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

David Plainfossé and Marc Shapiro. A survey of dis-
tributed garbage collection techniques. In International
Workshop on Memory Management, pages 211-249.
Springer, 1995.

Alex Poms, Will Crichton, Pat Hanrahan, and Kayvon
Fatahalian. Scanner: Efficient video analysis at scale.
ACM Trans. Graph., 37(4):138:1-138:13, July 2018.

Hang Qu, Omid Mashayekhi, Chinmayee Shah, and
Philip Levis. Decoupling the control plane from pro-
gram control flow for flexibility and performance in
cloud computing. In Proceedings of the Thirteenth Eu-
roSys Conference, EuroSys ’18, New York, NY, USA,
2018. Association for Computing Machinery.

Matthew Rocklin. Dask: Parallel computation with
blocked algorithms and task scheduling. In Kathryn
Huff and James Bergstra, editors, Proceedings of the
14th Python in Science Conference, pages 130 — 136,
2015.

Danilo Sato, Arif Wider, and Windheuser Christoph.
Continuous delivery for machine learning, Sep 2019.

Elliott Slaughter, Wonchan Lee, Sean Treichler, Michael
Bauer, and Alex Aiken. Regent: a high-productivity pro-
gramming language for hpc with logical regions. In
Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Anal-
ysis, pages 1-12, 2015.

Vikram Sreekanti, Chenggang Wu Xiayue Charles
Lin, Jose M Faleiro, Joseph E Gonzalez, Joseph M
Hellerstein, and Alexey Tumanov. Cloudburst:
Stateful functions-as-a-service. arXiv preprint
arXiv:2001.04592, 2020.

Vikram Sreekanti, Harikaran Subbaraj, Chenggang Wu,
Joseph E Gonzalez, and Joseph M Hellerstein. Op-
timizing prediction serving on low-latency serverless
dataflow. arXiv preprint arXiv:2007.05832, 2020.

Andrew S Tanenbaum and Maarten Van Steen. Dis-
tributed systems: principles and paradigms. Prentice-
Hall, 2007.

Shivaram Venkataraman, Aurojit Panda, Kay Ouster-
hout, Ali Ghodsi, Michael Armbrust, Benjamin Recht,
Michael Franklin, and Ion Stoica. Drizzle: Fast and
adaptable stream processing at scale. In Proceedings
of the Twenty-Sixth ACM Symposium on Operating Sys-
tems Principles, SOSP *17. ACM, 2017.

Stephanie Wang, John Liagouris, Robert Nishihara,
Philipp Moritz, Ujval Misra, Alexey Tumanov, and Ion
Stoica. Lineage stash: fault tolerance off the critical
path. In Proceedings of the 27th ACM Symposium on
Operating Systems Principles, pages 338-352, 2019.

[53]

[54]

[55]

[56]

Stephanie Wang, Edward Oakes, and Frank Luan.
Ownership nsdi’21 artifact. https://github.com/
stephanie-wang/ownership-nsdi2021l-artifact.

Tom White. Hadoop: The Definitive Guide. O’Reilly
Media, Inc., 2012.

Yuan Yu, Panagiotis Manolios, and Leslie Lamport.
Model checking tla+ specifications. In In Correct Hard-
ware Design and Verification Methods (CHARME ’99),
Laurence Pierre and Thomas Kropf editors. Lecture
Notes in Computer Science, Springer-Verlag., volume
1703, pages 54-66, June 1999.

Matei Zaharia, Mosharaf Chowdhury, Tathagata Das,
Ankur Dave, Justin Ma, Murphy McCauley, Michael J
Franklin, Scott Shenker, and Ion Stoica. Resilient dis-
tributed datasets: A fault-tolerant abstraction for in-
memory cluster computing. In Proceedings of the 9th
USENIX conference on Networked Systems Design and
Implementation, pages 2-2. USENIX Association, 2012.


https://github.com/stephanie-wang/ownership-nsdi2021-artifact
https://github.com/stephanie-wang/ownership-nsdi2021-artifact

A Distributed Reference Counting

Type ‘ Description

Local refer-| A flag indicating whether the DFut has gone out of
ence the process’s scope.

Submitted Number of tasks that depend on the object that were

task count submitted by this process and that have not yet com-
pleted execution.

Borrowers The set of worker IDs of the borrowers created by this

process, by passing the DFut as a first-class value.
Nested DFuts | The set of DFuts that are in scope and whose values
contain this DFut.

Lineage count | Number of Tasks that depend on this DFut that may
get re-executed. This count only determines when the
lineage (the Task field) should be released; the value
can be released even when this count is nonzero.

Table 3: Full description of the References field in Table 2. Every
process with an instance of the DFut (either the owner or a borrower)
maintains these fields.

If a DFut never leaves the scope of its owner, it does not
require a distributed reference count. This is because the
owner always has full information about which pending tasks
require the object. However, since our API allows passing
DFuts to other tasks as first-class values, we use a distributed
reference count to decide when the object is out of scope.

Our reference counting protocol is similar to existing so-
lutions [33,42]. As explained in Section 4.2, the reference
count is maintained with a tree of processes. Each process
keeps a local set of borrower worker IDs, i.e. its children
nodes in the tree. Most of the messages needed to maintain
the tree are piggy-backed on existing protocols, such as for
task scheduling.

A borrower is created when a task returns a SharedDFut to
its parent task, or passes a SharedDFut to a child task. In both
cases, the process executing the task adds the ID of the worker
that executes the parent or child task to its local borrower set.

In many cases, a child task will finish borrowing the DFut
by the time it has finished execution. Concretely, this means
that the worker executing the child task will no longer have a
local reference to the DFut, nor will it have any pending de-
pendent tasks. Thus, when the worker returns the task’s result
to its owner, the owner can remove the worker from its local
set of borrowers, with no additional messages needed. This
optimization is important for distributing load imposed by ref-
erence counting among the borrowers, rather than requiring
all reference holders to be tracked by the owner.

However, in some cases, the worker may borrow the DFut
past the duration of the child task. There are two cases: (1) the
worker passed the DFut as an argument to a task that is still
pending execution, or (2) the worker is an actor and stored
the DFut in its local state. In these cases, the worker notifies
the owner that it is still borrowing the DFut when replying

with the task’s return value.

Eventually, the owner must collect all of the borrowers in
its local set. It does this by sending a request to each borrower
to reply once the borrower’s reference count has gone to
zero. Borrowers themselves never delete from their local set
of borrowers. Once a borrower no longer has a reference or
any pending dependent tasks, it replies to the owner with its
accumulated local borrower set. The owner then removes the
borrower, merges the received borrowers into its local set
and repeats the same process with any new borrowers. If a
borrower dies before it can be removed, the owner removes it
upon being notified of the borrower’s death.

When a DFut is returned by a task, it results in a nested
DFut. Nested DFut s can be automatically flattened, e.g., when
submitting a dependent task, but we must still account for
nesting during reference counting. We do this by keeping a
set of DFuts whose values contain the DFut in question in the
ownership table (Table 2). The DFut’s value is pinned if its
nested set is non-empty.

B Formal Specification

We developed a formal specification for the ownership-based
system architecture [53]. It models the system state transitions
of the ownership table for task scheduling, garbage collection,
and worker failures. The goal is to check the correctness
of the system design, which is manifested in the following
properties:

» Safety: A future’s lineage information is preserved as
long as a task exists that depends on the value of the
future. This is defined recursively: at any time, either the
value of a future is stored inline (thus cannot be lost),
or all futures that this future depends on for computing
its value must be safe. Formally, it means the following
invariant holds at any given time: Vx,

LineageInScope(x) =
Vx = INLINE_VALUE
VVarg € x.args : LineageInScope(arg)

* Liveness: The system will eventually execute all tasks
and resolve all future values, even in case of failures, i.e.,
all Get calls eventually return.

* No Resource Leakage: The system will eventually clean
up all task states and future values, after the all references
to futures become out-of-scope.

We checked the model using the TLA*Model Checker [55]
for up to 3 levels of recursive remote function calls, where
each function creates up to 3 futures, and verified that the
safety and liveness properties hold in more than 44 million
distinct states. Currently, the model does not include first-class
futures or actors; we plan to include these and open-source
the full TLA"specification in the future.



	Introduction
	Distributed Futures
	API
	Applications

	Overview
	Requirements
	Existing solutions
	Our solution: Ownership

	Ownership Design
	Task scheduling
	Memory management
	Failure recovery

	Evaluation
	Microbenchmarks
	End-to-end applications

	Related Work
	Discussion
	Distributed Reference Counting
	Formal Specification

