
SkyPilot: An Intercloud Broker for Sky Computing

Zongheng Yang∗, Zhanghao Wu∗, Michael Luo, Wei-Lin Chiang, Romil Bhardwaj,
Woosuk Kwon, Siyuan Zhuang, Frank Sifei Luan, Gautam Mittal, Scott Shenker§, Ion Stoica

University of California, Berkeley §UC Berkeley and ICSI

Abstract
To comply with the increasing number of government regu-
lations about data placement and processing, and to protect
themselves against major cloud outages, many users want
the ability to easily migrate their workloads between clouds.
In this paper we propose doing so not by imposing uniform
and comprehensive standards, but by creating a fine-grained
two-sided market via an intercloud broker. These brokers will
allow users to view the cloud ecosystem not just as a collec-
tion of individual and largely incompatible clouds but as a
more integrated Sky of Computing. We describe the design
and implementation of an intercloud broker, named SkyPilot,
evaluate its benefits, and report on its real-world usage.

1 Introduction
The modern information infrastructure is built around three
components. The Internet provides end-to-end network con-
nectivity, cellular telephony provides nearly ubiquitous user
access via increasingly powerful handsets, and cloud com-
puting makes scalable computation available to all. These
ecosystems obviously have many superficial differences, but
perhaps their most fundamental difference lies in the degree of
compatibility between providers in each of these ecosystems.

The Internet and the cellular infrastructure were designed
with the goal of universal reachability. This required both
uniform and comprehensive industry standards and broadly-
adopted interconnection agreements (for Internet peering and
cellular roaming) that led to a globally connected federation of
competing providers. The cloud ecosystem has very different
origins, emerging as a replacement for dedicated on-premise
computing clusters rather than serving as an interconnected
communication infrastructure. As a result, cloud providers
began by emphasizing their differences rather than their simi-
larities; though the clouds are all based on the same basic con-
ceptual units (e.g., VMs, containers, and now FaaS), they ini-
tially differed greatly in their orchestration interfaces. These
orchestration interfaces have become more similar over time,

*Equal contribution.

but some clouds continue to differentiate themselves through
numerous proprietary service interfaces, such as for storage or
key-value stores. In addition, clouds typically impose much
higher charges on data leaving than on data entering, resulting
in “data gravity” (i.e., the difficulty of moving jobs to another
cloud due to the expense of transferring the data). The combi-
nation of proprietary service interfaces and data gravity have
led to significant customer lock-in: it is hard for companies
who have established their computational workloads on one
cloud to move them to another.

However, as cloud computing has become a critical part of
our computational infrastructure, enterprises are increasingly
worried about how difficult it is to migrate workloads between
clouds. There are two compelling reasons for wanting more
freedom in workload placement. First, no business wants any
critical part of their infrastructure tied to a single provider
because such lock-in reduces their negotiating leverage and
also makes the business vulnerable to large-scale outages at
the provider. Second, there are now strict regulations about
data and operational sovereignty that dictate where data can
be stored and computational jobs run. Not all cloud providers
have datacenters in all countries, so the inability to migrate
jobs between cloud providers could be a painful roadblock
to satisfying these new regulations. These two reasons are
not theoretical problems whose solutions would be “nice-to-
have”; the recent occurrence of large-scale cloud outages and
the increasing number of government regulations are quickly
making such a solution a “must-have” for large-scale users of
the cloud. This paper is about how we can ease the migration
of workloads through the rise of Sky Computing, a concept
first introduced in [81] but significantly extended and more
deeply explored here. Sky Computing is when users, rather
than directly interacting with the cloud, submit their jobs to
what we call intercloud brokers who handle the placement
and oversee the execution of their jobs.

To explain our approach in more depth, we first review
related concepts and recent developments (§2). We then (§3)
describe our vision of Sky Computing and its transformative
possibilities. We present the requirements, architecture, and

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 437

implementation of an intercloud broker, named SkyPilot, that
focuses on computational batch jobs (§4). We then demon-
strate its benefits on several applications (§5). Finally, we
share our experiences with early deployments (§6), survey
related work (§7), and conclude (§8). While the body of this
paper is devoted the technical characteristics of our system, in
the appendix (§A.1) we speculate on how the cloud ecosystem
might evolve once Sky Computing is more widely adopted.

SkyPilot is open source and available at https://
github.com/skypilot-org/skypilot.

2 Related Concepts and Recent Developments
In this section we first review two concepts related to the
ability to migrate workloads – standards and multicloud – and
then discuss the recent progress towards compatibility.

2.1 Why Not Just Adopt Standards?

The first question one might ask is if seamless migration is
the goal, why not adopt a set of uniform and comprehensive
cloud standards, as was done for the Internet and cellular? In
fact, a decade ago IEEE proposed a set of Intercloud standards
for portability, interoperability, and federation among cloud
providers [88] involving an Intercloud Service Catalog and
an Intercloud federation layer. There are two fundamental
problems with this and other proposals for such uniform and
comprehensive cloud standards. First, there is no incentive
for the dominant clouds (i.e., those with large market shares)
to adopt such standards; it would decrease their competitive
advantage and make it easier for customers to move their
business to other clouds. Second, users interact with clouds
at many levels, using high-level service interfaces such as
PyTorch [76] or TensorFlow [53] in addition to low-level
orchestration interfaces such as Kubernetes [36]. If the goal
is to make workload migration seamless, then all of these
interfaces would need to be standardized. Requiring every
cloud to standardize every interface is both unrealistic (as
noted in the first objection) and unwise (because these higher-
level interfaces have changed significantly over time, and
standardizing them would greatly hinder innovation).

2.2 Why Isn’t This Just Multicloud?

Multicloud is now an industry buzzword, and there are re-
ports [33, 52] that most enterprises have, or will soon have,
multicloud deployments; this would seemingly imply that
our goal of seamless workload migration has already been
realized. However, the common use of the term multicloud
only requires that an enterprise have workloads on two or
more clouds (e.g., the finance team runs their backend func-
tions on Amazon while the analytics team runs their ML jobs
on Google), not that they can easily move those workloads
between clouds. It is clear, from everyone we have talked
to in the industry, that moving many workloads between
clouds remains difficult. The exceptions to this are the recent
third-party offerings (e.g., by Trifacta, Confluent, Snowflake,
Databricks, and others) that run on multiple clouds; users can

indeed migrate their workloads that only use these services be-
tween clouds relatively easily (BigQuery, offered by Google,
offers similar cross-cloud support). However, these are for
specific workloads, and do not provide general support for
workload migration.

In addition, there are several programming or management
frameworks that support multiple clouds. JClouds [8] and
Libcloud [10] offer portable abstractions over the compute,
storage, and other services of many providers. However, the
user still does the placement manually, whereas automatic
placement is a key feature of Sky Computing. On the manage-
ment front, Terraform [51] provisions and manages resources
on different clouds, but requires the usage of provider-specific
APIs, and also does not handle job placement. Kubernetes [36]
orchestrates containerized workloads and can be run across
multiple clouds (e.g., Anthos [5]). These frameworks, while
quite valuable, focus on providing more compatibility in the
lower-level infrastructure interfaces offered by the clouds
(see §2.3), and as such are nicely complementary with Sky
Computing but do not obviate the need for Sky Computing.

2.3 Growth In Interface Compatibility

Turning away from related concepts, we now discuss a recent
development that Sky Computing will leverage. As noted
before, users of cloud computing invoke a wide variety of
computational and management interfaces. Many of these are
open source systems that have become the de facto standards
at different layers of the software stack, including operating
systems (Linux), cluster resource managers (Kubernetes [36],
Apache Mesos [63]), application packaging (Docker [27]),
databases (MySQL [41], Postgres [43]), big data execution
engines (Apache Spark [93], Apache Hadoop [89]), stream-
ing engines (Apache Flink [57], Apache Spark [93], Apache
Kafka [9]), distributed query engines and databases (Cas-
sandra [7], MongoDB [39], Presto [44], SparkSQL [48], Re-
dis [45]), machine learning libraries (PyTorch [76], Tensor-
Flow [53], MXNet [58], MLflow [38], Horovod [79], Ray
RLlib [66]), and general distributed frameworks (Ray [71],
Erlang [55], Akka [1]). In addition, some of AWS’s interfaces
are increasingly being supported on other clouds: Azure and
Google provide S3-like APIs for their blob stores to make it
easier for customers to move from AWS to their own clouds.
Similarly, APIs for managing machine images and private
networks are converging.

These trends increase what we call limited interface com-
patibility, where both of these qualifiers are crucial. This
compatibility applies only to individual interfaces and these
interfaces are typically not supported by all clouds but by
more than one. Our contention, based on what we see in the
ecosystem, is that the number and the usage of these inter-
faces that have this limited compatibility – i.e., are supported
on more than one cloud – is increasing, largely but not exclu-
sively due to open-source efforts.

We are basing our approach on the belief that this trend will

438 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/skypilot-org/skypilot
https://github.com/skypilot-org/skypilot

continue, and that leveraging this trend is far preferable to pur-
suing uniform and comprehensive standards. To paraphrase
a quote attributed to Lincoln, we know that all interfaces are
supported by some clouds, and some interfaces may be sup-
ported by all clouds, but we cannot and should not require
that all interfaces be supported by all clouds.1

3 The Vision of Sky Computing
We first describe what Sky Computing is, and articulate why
we see it as not just tactical but transformative.

3.1 What Is Sky Computing?

Given this increasing level of limited interface compatibility,
how do we leverage it to ease workload migration? There are
two key components. First, in order to reduce data gravity,
clouds can enter into reciprocal free data peering; i.e., two
clouds can agree to let users move data from one cloud to an-
other without charge. With high-speed connections prevalent
(many clouds have 100 Gbps connections to various intercon-
nection points where they can peer with other clouds), we
think such free peering can easily be supported, with its costs
more than offset by the increase in computational revenue that
it enables. One might worry about the delay that such transfers
incur, but if the resulting computation times are superlinear in
the data size (or linear with a reasonably high constant) then
no matter how large datasets become, the networking delays
will not be a major bottleneck.

The second component, and the one we focus on for the
rest of this paper, is what we call intercloud brokers. In this
paper we describe our intercloud broker, which is designed
specifically for computational batch jobs (§4). While batch
jobs (e.g., ML, scientific jobs, data analytics) represent only a
fraction of today’s diverse cloud use cases, their computation
demands are growing quickly [74] and are responsible for
the recent surge of specialized hardware [15, 22, 23]. Thus,
we have started with a broker designed for batch jobs as a
tractable but common and rapidly growing workload. We
expect future versions of the broker will address a wider range
of workloads, and provide a broader set of features, but that
is not our focus here. In addition, we expect that eventually
there will be an open market in intercloud brokers that charge
a small fee for their brokerage service; some of those brokers
will be general purpose and others more tailored to specific
workloads, as ours is.

An intercloud broker takes as input a computational request
that is is specified as a directed acyclic graph (DAG) in which
the nodes are coarse-grained computations (e.g., data pro-
cessing, training).2 For lack of a better term we call these
computations “tasks”. The request also includes the user’s
preferences about price and performance.

1The following adage is widely but incorrectly attributed to Lincoln: “You
can fool part of the people some of the time, you can fool some of the people
all of the time, but you cannot fool all the people all of the time.”

2This is informed by workflow systems [6] that are now the de facto
standard for orchestrating complex batch applications.

ML Pipeline

Intercloud Broker

Data
proc Training Serving

Training ServingSecure
Data proc

Figure 1: An ML pipeline running on top of Sky. The goal is to
minimize cost while processing the input data securely.

The intercloud broker is then responsible for placing these
tasks across clouds. Unlike existing multicloud applications
which run an application instance per cloud, an intercloud
broker can run a single application instance across several
clouds. For example, Figure 1 shows a machine learning (ML)
pipeline with three tasks: data processing, training, and serv-
ing. The user may wish to minimize the total cost while pro-
cessing data securely. The intercloud broker might decide to
run data processing on Azure Confidential Computing [16] to
anonymize data and thus protect data confidentiality, training
on GCP to take advantage of TPUs [23], and serving on AWS
to take advantage of the Inferentia accelerator [15].

The ability to partition applications enables the emergence
of specialized clouds. For example, a cloud provider can build
a successful business by just focusing on a single task, such
as ML training, and offering the best price-performance for
that task; see §A.1 for a more detailed discussion of this.

In addition, the intercloud broker provides benefits even
when the application (i) entirely runs on a single cloud, by
automatically choosing the cloud that best matches the user’s
preferences and choosing the best region and zone within that
cloud, or (ii) uses services3 provided only by a single cloud,
by placing a task on that cloud but still having the freedom to
use other clouds for the other tasks.

3.2 Why Is This Transformational?

There are three reasons, each from a different perspective, why
we see this as a transformational change in cloud computing,
not as merely a tactical mechanism for workload migration.

User’s Perspective: When using an intercloud broker, users
are no longer interacting with individual clouds, but with a
more integrated “Sky” of computing. They merely specify
their computation and their criteria, and the broker then places
the job. This makes it significantly easier to use the cloud,
and may lead to increased cloud adoption. Note that such an
interface hides the heterogeneity between and within clouds.
Users no longer need to research which clouds have the best
prices, or offer a particular service. This also applies within
individual clouds, because different regions within a cloud

3By “service” we mean the compute services or a hosted service provided
by one or more clouds, such as hosted Apache Spark (e.g., EMR [4], HDIn-
sight [17]) and hosted Kubernetes (e.g., EKS [3], GKE [32], or AKS [18]).

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 439

can offer different hardware options and different prices.
Competitive Perspective: Note that by serving as an in-

termediary between users and clouds, the intercloud broker
is creating a fine-grained two-sided market for computation:
users specify their tasks and requirements, and clouds of-
fer their interfaces with their pricing and performance. Job
placement is no longer driven mostly by measures to pro-
mote lock-in (e.g., proprietary interfaces and data gravity),
but increasingly by the ability of each cloud to meet the user’s
requirements through faster and/or more cost-efficient imple-
mentations. This means that the clouds, in order to increase
their market, will likely start supporting interfaces that are
commonly used in jobs, driving the market towards increased
compatibility.

Ecosystem Perspective: Once there is a two-sided market
established, the cloud ecosystem can transition from one in
which all clouds offer a broad set of services and try their
best to lock customers in, to one in which many clouds focus
on becoming part of a computational Sky, where they can
specialize in certain tasks because the intercloud broker will
automatically direct computations to them if they best meet
user needs for those particular tasks; the economic analysis
in the appendix (§A.1.2) makes this case more precisely.

This vision should be tempered with several doses of reality.
First, while we envision some clouds will embrace the vision
of Sky Computing by focusing on compatible interfaces and
adopting reciprocal free data peering, we expect others, partic-
ularly those with dominant market positions, to continue with
lock-in as a market strategy. Nonetheless, the presence of a
viable alternative cloud ecosystem will set the bar for innova-
tion and meeting user requirements, so all users will benefit.
Second, we assume that the creation of Sky Computing will
be a lengthy process that will start slowly and gradually gather
momentum. Our goal in this paper is to investigate how to
start this transformation, not to define its ultimate form. As
such, we start with with an intercloud broker for batch jobs—a
small but important set of workloads. Third, given our focus
on the early stages of the Sky, we do not provide solutions
to several problems that must eventually be addressed, such
as how to troubleshoot failures that occur with applications
running across multiple clouds.

4 Intercloud Broker
We now present an intercloud broker that targets batch ap-
plications. We first review the requirements of such a broker,
and then propose an architecture. Finally, we describe our
implementation of the resulting design, called SkyPilot.

4.1 Requirements

Cataloging cloud services and instances. There is a huge
and growing number of services, instances, and locations4

across clouds. As shown in Table 1, the top three public clouds
alone provide hundreds of compute VM types in dozens of

4We use “locations” to refer to regions and zones, collectively.

Cloud Regions Zones VM types

AWS 20 (US: 4∗) 64 (US: 15∗) ≥ 558
Azure 51 (US: 8∗) 124 (US: 23∗) ≥ 714
GCP 35 (US: 9) 106 (US: 28) ≥ 155

Table 1: Top public clouds with their myriad choices of locations
and compute instance types. Data is gathered from each cloud at
the time of writing. ∗Not counting government cloud regions.

0 1 2 3 4 5 6 7 8
Elapsed Time (days)

0
100
200
300
400

Cumulative number of preemptions

Figure 2: Dynamic resource unavailability: preemptions over time
from a real-world bioinformatics workload trace. The workload ran
for 8 days, using 24 large-CPU spot VMs on GCP, us-west1.

regions across the globe. Even for a simple request of a 4-
vCPU VM in the “compute-optimized” family—advertised by
all three clouds—there are at least 90 choices within the US
in terms of region and VM type. Furthermore, each cloud has
hundreds of software services (e.g., hosted Kubernetes/Spark,
blob storage, SQL databases) to choose from. This is clearly
beyond what can be navigated manually by ordinary users.

To provide the automatic placement of jobs, the broker
must catalog the variety of instances and services, the APIs
to invoke these services, and the subset of clouds and regions
where these offerings are available.

Even after they have been cataloged, these many options
are hard to navigate. Thus, the broker should expose filters
on common attributes to applications so that they can easily
narrow down the many options across clouds. For compute
instances, filters may include the number of vCPUs, RAM,
and accelerator types. For managed services (e.g., hosted ana-
lytics), filters may include the service or the package version
(e.g., AWS EMR 6.5, or Apache Spark 3.1.2). Moreover, the
broker should allow an application to choose specific services
or instances supported only by one cloud.

Tracking pricing and dynamic availability. The price
and availability of resources can vary dramatically across
clouds and even regions or zones in the same cloud, often, but
not always, following a diurnal pattern [73]. The variations
are especially acute for scarce resources (§5.4), such as GPUs
or preemptible spot instances that many applications use due
to their lower costs, and change over time.

To illustrate the potential changes in resource availabil-
ity, consider a real user’s application: a bioinformatics task
running for 8 days on 24 spot VMs on GCP (see §5.2 for
more detail). When a VM is preempted, it waits for another
spot VM to become available. Figure 2 shows the cumula-
tive number of preemptions over time. Note that preemptions
happened every day and at unpredictably different rates (e.g.,

440 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

compare day 3–4 vs. day 4–5). The application experienced
319 preemptions, a preemption every 36 minutes on average.

Thus, the broker should track the availability and pricing
to provide applications with the best choices at run time. One
challenge is that clouds do not publish availability information
explicitly. The broker may have to learn about availability
implicitly by observing preemptions or allocation failures of
both on-demand and spot resources in different locations.

Dynamic optimization. Recall that the goal of the broker is
to meet the application’s cost and performance requirements
under various constraints, such as data residency. This means
the broker should choose the types of instances or services,
clouds, and locations to run the tasks in the application DAG.
This is a challenging optimization problem because of (1)
the sheer number of choices (Table 1), (2) DAG topologies
becoming complex (Figure 10), and (3) the unpredictable re-
source availability and price changes during the application’s
provisioning or run time (Figure 2).

As a result, the broker should implement a dynamic op-
timizer that can reflect the current resource availability and
prices, and quickly find an optimal execution plan out of
the large search space. To use up-to-date prices, the broker
needs to compute the execution plan whenever an application
starts. In addition, when a task in an application DAG can-
not run as the broker originally planned due to availability
changes, the broker needs to generate a new execution plan
by re-optimization during the application’s run time.

Managing resources and applications. Once the opti-
mizer decides the placement of an application, the broker
must provision the resources and free them when the applica-
tion terminates. This involves starting and reliably shutting
down instances on various clouds, or creating and terminating
services (e.g., sending requests to a hosted service like AWS
EMR). While these lifecycle operations may seem straight-
forward, bugs or failures can easily lead to inconsistencies
between the broker state and the cloud provider state (e.g.,
leaking instances or intermediate data), which can be costly.

In addition, the broker must manage the execution of the
application, i.e., start an application’s task when its inputs are
available, possibly restart it in case of failures or preemptions,
and move the task’s inputs across clouds/regions, if remote.

4.2 Architecture

Given these requirements, we propose an intercloud broker ar-
chitecture consisting of the following components (Figure 3).

Catalog. The catalog records the instances and services
available in each cloud, detailed locations that offer them, and
the APIs to allocate, shut down, and access them. It also stores
the long-term prices for on-demand VMs, data storage, egress,
and services (typically these prices do not change for months).
The catalog can provide filtering and searching functionalities.
The catalog can be based on information published by the
clouds, listed by a third party, or collected by the broker.

Job specification (e.g., DAG),
User preferences (e.g., minimize cost,
latency, …)

Service
publisher

Cloud B
Compatibility Set

Intercloud
Broker

Service
publisher

Cloud A
Compatibility Set

Optimizer

Provisioner

Executor

Service
Catalog

Tracker

APIs, prices, ...

Figure 3: Architecture of the intercloud broker.

Tracker. This component tracks spot prices (which can
change more frequently, e.g., hourly or daily) as well as re-
source availability across clouds and their locations.

Optimizer. The optimizer takes as inputs (1) the applica-
tion’s DAG and its requirements, and (2) the instance and
service availability as well as their prices provided by the
catalog and tracker, and then computes an optimal placement
of the tasks. Upon resource availability and price changes, the
optimizer may perform re-optimization.

Provisioner. This component manages resources (§4.1) by
allocating the resources required to run the execution plan
provided by the optimizer, and freeing them when each task
exits. To handle unpredictable capacity and user quota errors,
the provisioner implements automatic failover, where it asks
the optimizer for a new placement plan if the provision fails.
Failures are also reported to the tracker.

Executor. The executor manages the application (§4.1) by
packaging each application’s tasks and running them on the
resources allocated by the provisioner.

In the future, we imagine intercloud brokers will offer more
sophisticated services such as troubleshooting across clouds,
providing more detailed performance measurements for spe-
cific applications on each cloud, the equivalent of spot-pricing
but across clouds, reselling services at lower than listed prices
(similar to the travel industry), and advanced configuration
features for security and/or networking.

Furthermore, we expect a commercial broker to provide
billing support to enable a user to have a single account with
the provider of the intercloud broker, which then pays for
the services rendered by each cloud on behalf of the user,
and charges the user back. In our current deployment, our
users have direct accounts with the three major clouds, so this
functionality is not needed.

4.3 SkyPilot: An Implementation

We have implemented SkyPilot, which follows the architec-
ture described in §4.2 with one difference: instead of imple-
menting the tracker as a centralized component, SkyPilot dis-
tributes it between the catalog that refreshes prices daily, and
the provisioner that tracks and caches provisioning failures.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 441

SkyPilot is written in ≈21,000 lines of Python code, and
has involved several person-years so far. It currently supports
AWS, Azure, and GCP. It is being used by users from 3 uni-
versities and 4 other organizations; we report our deployment
experience in §6. Next, we first describe SkyPilot in detail,
then discuss the services in the compatibility set it uses.

Application API. As mentioned earlier, an application is
specified as a DAG of coarse-grained tasks. Example tasks
include a Spark job to process data, a Horovod [79] job to
train a model, or an MPI job for HPC computations. A task
starts when all of the tasks that provide its inputs have finished.
Each task is self-contained and includes its executable and all
library dependencies (e.g., packaged as a Docker image).

A task specifies its input and output locations in the form
of cloud object store URIs. Optionally, a task can provide the
size estimates of its inputs and outputs to help the optimizer
estimate the cost of data transfers across clouds.

Each task specifies the resources it requires. For flexi-
bility, resources are encoded as labels, such as “cpu: 4” or
“accelerator: nvidia-v100”, an idea we borrow from cluster
managers such as Borg [85], Mesos [63], and Condor [82].
The optimizer uses these resource labels to search the service
catalog for a set of feasible candidates for each task. If de-
sired, the user can short-circuit the optimizer’s selection by
explicitly specifying a cloud and an instance type.

The user optionally specifies the number of instances for
each task by a “num_nodes: n” label, which defaults to 1.
Since we target coarse-grained batch jobs, our users have not
found this a burden. In the future, we plan to support autoscal-
ing or intelligently picking the number of instances [54, 84].

Finally, the user supplies an optional time estimator for
each task, which estimates how long it will run on each speci-
fied resource. These estimates are used by the optimizer for
planning the DAG. The user could determine these estimates
by benchmarking the task on different configurations. If a
time estimator is unspecified for a task, currently the opti-
mizer defaults to the heuristic of choosing the resource with
the lowest hourly price.5

Example. Listing 1 shows an application consisting of two
tasks. The train task trains a model. It reads the input data
from S3 and writes the output (the trained model) to the
object store of the cloud it is assigned to run on, which is
determined by the optimizer. By using Resources, a dictio-
nary of resource labels, the user specifies that this training
task requires either an nvidia-v100 accelerator or a google-tpu-
v3-8 accelerator with 4 host vCPUs. The user also provides
a train_time_estimator_fn lambda that estimates the task’s
run time on these two accelerators. For example, one can com-
pute a rough estimate by dividing the total number of floating
operations required for training the model by the accelerator’s
performance in FLOPS (floating point operations per second),

5Prior work [83] have considered performance prediction for analyt-
ics [84] and machine learning [78] workloads, which can also be leveraged.

A simple application: train -> infer.
with Dag() as dag:

train = Task('train', run='train.py',
arg='--data=$INPUT[0] --model=$OUTPUT[0]')

.set_input('s3://my-data', size=150 * GB)
'?': saves to the cloud this op ends up running on.
.set_output('?://my-model', size=0.1 * GB)
Required resources. A set ({}) means pick any Resources.
.set_resources({

Resources(accelerator='nvidia-v100'),
Resources(accelerator='google-tpu-v3-8', cpu=4)})

A partial function: Resources -> time.
.set_time_estimator(train_time_estimator_fn)

infer = Task('infer', run='infer.py',
arg='--model=$INPUT[0]')

.set_input(train.output(0))

.set_resources({
Resources(accelerator='nvidia-t4'),
Resources(accelerator='aws-inferentia', ram=16 * GB)})

.set_time_estimator(infer_time_estimator_fn)
Connect the tasks.
train >> infer

Listing 1: API to express a simple application.

or use a more accurate benchmarking-based predictor.
The infer task performs model serving. It takes the trained

model as input (set_input(train.output(0))). The Airflow-
like statement, train >> infer, enforces this dependency.
These two tasks are encapsulated in a Dag object. The DAG is
passed to the optimizer to output an execution plan, which is
then passed to the provisioner and the executor.

Figure 4a visualizes the DAG. (I/O data are task attributes
and not nodes in the DAG; we show them for clarity.) While
simple, this basic API already exposes many degrees of free-
dom. For example, while train’s input is on S3, the optimizer
may choose to assign the task to a different cloud. In doing
so, the optimizer must take into account the possible transfer
costs, while satisfying the task’s requirements.

For convenience, SkyPilot also offers a YAML interface to
specify an application in addition to the programmatic API.

Catalog. SkyPilot implements a simple catalog to support
three services (IaaS, object stores, managed analytics) on
AWS, Azure, and GCP. These offerings are sufficient for our
target workloads. We use the clouds’ public APIs to obtain
details about these offerings. Pricing is refreshed periodically.

Optimizer. The optimizer assigns each task to a cloud, lo-
cation, and hardware configuration to best satisfy the user’s
requirements, e.g., minimize the total cost or time. It achieves
this by filtering the offerings in the service catalog and solving
an integer linear program (ILP) to pick an optimal assignment.

Before the actual optimization takes place, the opti-
mizer first translates the high-level resource requirements
into a set of feasible configurations, i.e., tuples of 〈cloud,
zone, instance type〉, that can be used to run each task.6

We call such a configuration a cluster. For example,

6This also applies to most hosted analytics offerings (e.g., EMR, Dat-
aproc) as they allow users to specify the cluster size and instance types.

442 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

AWS
s3://

my-data train

? ?
?://

my-model infer

(a) The declared application DAG.

AWS
s3://

my-data
train

GCP AWS
gs://

my-model
inferegress egress

n1-standard-8
tpu v3-8

inf1.2xlarge

(b) DAG, after optimization.
Figure 4: An application, before and after optimization.

Resources(accelerator='nvidia-v100') can be mapped to a
cluster of AWS instances 〈AWS, us-west-2a, p3.2x〉 or Azure
instances 〈Azure, westus2-1, NC6s_v3〉. To perform this trans-
lation, the optimizer filters the offerings in the service catalog
to check if they satisfy the Resources required by each task.
Each task is then annotated with the list of feasible clusters.

The optimizer computes execution plans at a zone level
rather than a region level. This is because even in the same
region, different zones can have different instance types and
prices, and the data transfer between zones is not free.

ILP-based optimization. Consider a DAG with N tasks,
each with C feasible clusters. Because C is typically in the 10s
and can be up to 100s,7 naively enumerating all CN possible
assignments is infeasible even for modest values of N. To
solve this, we formulate the assignment problem as a 0-1 ILP.

SkyPilot supports two types of optimization objectives: ei-
ther total running cost or end-to-end run time. Our ILP formu-
lation is inspired by Alpa [94], but we additionally consider
the parallelism between tasks that do not have dependency on
each other. This is critical for minimizing the DAG run time.

Given a DAG (V,E) where V is the set of the tasks and
E is the set of the edges representing the data dependencies
between the tasks, our goal is to find an optimal mapping
from each task in V to one of its annotated feasible clusters.
For each task v ∈V , we denote the set of the feasible clusters
by Cv. Then we use a task time estimator to obtain a time
vector tv ∈ R|Cv|, where each element is the time estimate for
running task v on a cluster in Cv. The time estimator can be
either provided by the user or set to a default value of 1 hour.
In addition, we get a cost vector cv ∈ R|Cv| by multiplying tv
by the hourly price of each cluster. To account for the data
transfer overhead between two tasks (u,v) ∈ E, we define a
matrix Puv ∈R|Cu|×|Cv| whose (i, j) element is the data transfer
time when the parent task u is mapped to the i-th cluster of
Cu and the child task v is mapped to the j-th cluster of Cv.
Similarly, we define Quv ∈R|Cu|×|Cv| for the data transfer cost
between u and v.

7For instance, the previous example that requires one V100 GPU maps to
79 feasible clusters globally across AWS, Azure, and GCP.

When minimizing the total cost, we have:

min
s ∑

v∈V
sT

v cv︸ ︷︷ ︸
computation cost

+ ∑
(u,v)∈E

sT
u Quvsv︸ ︷︷ ︸

data transfer cost

(1)

where sv ∈ {0,1}|Cv| is a one-hot vector that selects a cluster
from Cv. The objective explicitly considers the two types of
cost: the first term represents the total cost spent in executing
all tasks on the selected clusters, while the second term repre-
sents the total data transfer cost. After we linearize [61] the
second term, we get a 0-1 ILP, which SkyPilot solves using
an off-the-shelf solver, CBC [60].

Similarly, when minimizing the end-to-end time, we have:

min
s

fsink (2)

s.t. fv ≥ fu︸︷︷︸
parent

finish time

+ sT
u Puvsv︸ ︷︷ ︸

data transfer
time

+ sT
v tv︸︷︷︸

computation
time

∀(u,v) ∈ E (3)

where sv ∈ {0,1}|Cv| is the one-hot decision vector and fv ∈R
is the finish time of the task v. The optimization constraint
ensures that a task finishes no earlier than its parents, the input
data arrive, and the task produces its outputs. Under these
constraints, the running time of the DAG becomes the finish
time of its sink.8 Again, as we can linearize the second term,
this problem can be efficiently solved by 0-1 ILP solvers.

While we cover the two representative objectives above,
our ILP formulation allows any combination of cost and time
to be used for the optimization. For example, we can minimize
the cost under a time budget (or vice versa), by augmenting
Equation 1 with the constraint in Equation 3 and bounding
fsink by the time budget. Future work can incorporate carbon
footprint of cloud regions [21] into placement decisions.

Provisioner. SkyPilot implements a provisioner that reads
the optimized plan and allocates a cluster for the next task
ready to execute. As discussed, allocations may fail due to
either insufficient capacity in a cloud’s location or insufficient
quota of the user’s account. On such failures, the provisioner
kicks off failover as follows. First, the failed location is tem-
porarily blocked for the current allocation request with a time-
to-live. Then, the optimizer is asked to re-optimize the DAG
with this new constraint added. The provisioner then retries
in the newly optimized location (another location of the same
cloud or a different cloud). If all available locations fail to
provide the resource, either an error is returned to the user or
the provisioner can be configured to wait and retry in a loop.

We found failover to be especially valuable for scarce re-
sources (e.g., large CPU or GPU VMs). For example, depend-
ing on request timing, it took 3–5 and 2–7 location attempts
to allocate 8 V100 and 8 T4 GPUs on AWS, respectively.

8 If the DAG has multiple sinks, we create a dummy sink that has a fake
dependency on the real sinks.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 443

Executor. After a cluster is provisioned, the executor or-
chestrates a task’s execution, e.g., setting up the task’s depen-
dencies on the cluster, performing cross-cloud data transfers
for the task’s inputs, and running the task (which can be a
distributed program utilizing a multi-node cluster). We built
an executor on top of Ray [71], a distributed framework that
we use for intra-cluster task execution with fault tolerance sup-
port. Using Ray, rather than building a new execution engine,
allowed us to focus on building the higher-level components
new to the broker. For example, our executor implements
a storage module that abstracts the object stores of AWS,
Azure, and GCP and performs transfers. The executor also
implements status tracking of task executions for resource
management. On execution failures, the executor optionally
exposes cluster handles to allow login and debugging.

The executor interface is modular. We envision other execu-
tors will be added in the future, e.g., for Kubernetes [36]. In
addition, while our system formulation is generic enough to
support arbitrary DAGs, our implementation of the executor
has focused on supporting pipelines (sequential DAGs).

Compatibility set. One of the distinguishing features of
Sky is leveraging the already existing services and APIs across
clouds (i.e., compatibility set; §2.3), rather than building uni-
form services and APIs across all clouds. However, a broker
still needs to develop some glue-code to handle similar but not
identical services supported by different clouds. The natural
question is what is the effort to implement such glue-code?
The answer for our applications so far is “minimal”.

To manage clusters, SkyPilot uses Ray’s cluster launcher,
which already supports AWS, GCP, and Azure. (Other frame-
works could also be used, e.g., Terraform [51].) The main
functionality we added is the control for automatic failover.

One of the most important components of any Sky applica-
tion is storage. While the APIs provided by the object stores
of the three major clouds are similar, they are not identical.
Fortunately, all have libraries [20,30,46] exposing the POSIX
interface, which allows us to mount different object stores as
directories. Providing this functionality required only 400–
500 lines of code (LoC) per object store.

Finally, for analytics applications we use high-level APIs,
e.g., hosted analytics services provided by AWS (EMR) and
GCP (Dataproc). Abstracting these services required us to
implement just two methods: provisioning and termination.
This involved only 200 LoC for EMR and Dataproc together.

5 Experiments
We conduct a series of experiments to evaluate the benefits of
our intercloud broker. Overall, we found that:
• SkyPilot enables batch applications to take advantage of

unique hardware, unique managed services, and improved
availability across locations and clouds.

• On three applications (ML pipelines, scientific jobs, and
data analytics), SkyPilot saves up to 2.7× in time, 80%

Workload Uses Benefits from

ML IaaS unique hardware

Bioinformatics IaaS (spot VMs) improved availability

Analytics managed analytics unique software service
& unique hardware

Table 2: Evaluated workloads, cloud services used, and benefits.

in cost, and 2× in makespan, compared to using a single
cloud or location.

• Even for single-cloud applications, the broker improves
availability by migrating jobs across regions, a policy not
supported by cloud providers’ own solutions (§5.2).

Table 2 shows all workload types and their respective benefits.

5.1 Machine Learning Pipelines

We start with running two ML pipelines on SkyPilot to lever-
age the strengths of different clouds. In both pipelines, the
goal is to minimize the total cost. We consider two scenarios:

• Single-cloud: all tasks are constrained to a single cloud;
• Broker: each task runs according to the plan generated by

SkyPilot’s optimizer, possibly on different clouds.

Overall, both pipelines benefit from SkyPilot’s flexibility to
run compute-intensive tasks on clouds with unique hardware
accelerators (e.g., Inferentia, TPUs) that can provide speedups
which offset the cost and latency of moving the data.

Due to space limit, we show in appendix (§A.2) an addi-
tional experiment on SkyPilot leveraging spot instances across
clouds to run ML training with improved availability and cost.

5.1.1 Vision Pipeline

The vision pipeline consists of two tasks: train and infer (see
Listing 1). The train task trains a ResNet-50 model on the
ImageNet dataset (150 GB, stored on AWS S3). The infer
task runs offline inference on 108 images (e.g., nightly photo
categorization for services like Instagram or Google Photos).

Since training deep learning models often requires iterative
and heavy computations, we demonstrate a large reduction in
cost and run time by moving the training data from AWS to
GCP to leverage its TPU accelerators for training [23].

Setup. We specify resource candidates for each task as:

• train: 'nvidia-v100', 'google-tpu-v3-8'
• infer: 'google-tpu-v3-8', 'nvidia-t4', 'aws-inferentia'

For train, we use a V100 (common high-end GPU for training)
or a TPU. For infer, we use a TPU, a T4 GPU (marketed as the
most cost-effective GPU for model inference), or an Inferentia
accelerator designed by AWS for cost-effective inference [15].

The best single-cloud plans are shown in Figure 5, termed
{AWS, GCP, Azure}-only. The Broker plan is SkyPilot’s opti-
mizer output that minimizes the total cost. In this experiment,
we used a simple time estimator that divides the total FLOPs

444 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0 20 40 60 80 100

Cost ($)

Broker

Azure-only

GCP-only

AWS-only

13

13

13

〈GCP, TPU v3-8〉
44

NC6s v3 (V100)
87

TPU v3-8
44

p3.2xl (V100)
85

〈AWS, inf1.2xl〉
5

NC8as T4 v3 (T4)
17

T4
19

inf1.2xl (Inferentia)
5

egress train infer

Figure 5: Vision pipeline: hardware and costs of each deployment.
For simplicity, the zones chosen for the plans are omitted. For train-
ing we use mixed-precision and the XLA compiler [50] with Ten-
sorFlow Keras 2.5.0. For inference we use half-precision. On GCP,
accelerators are attached to an n1-standard-8 VM.

required to train the model by the hardware FLOPS:9

def train_time_estimator_fn(resource):
train_tflops = ... # Obtained from model analysis.
if resource.accelerator == 'nvidia-v100':

hardware_tflops = 120
if resource.accelerator == 'google-tpu-v3-8':

hardware_tflops = 420
return train_tflops / hardware_tflops

We used a similar FLOPs-based time estimator for infer.

Results. We show the plan generated by SkyPilot’s opti-
mizer in Figure 4b and the results in Figure 5.

While this pipeline is simple, its search space is already
large, with a total of 2,170 possible assignments (details
in §5.4), as we have multiple choices in hardware, cloud, and
location. The optimizer successfully finds an optimal solution.
Compared with the three single-cloud plans, the Broker plan
lowers the total cost by 18%–47%, by taking advantage of the
unique hardware capabilities across two clouds.

For train, the optimizer decides that, despite the input being
stored on AWS, it is better to incur an egress cost and ship it to
GCP to use the TPU. This choice leads to a cost of $57 ($44
compute, $13 egress) which is less than training on AWS, at
$85.10 SkyPilot’s storage module uses GCP’s storage transfer
service [31] to copy the data in about 3 minutes.

For infer, the optimizer estimates that AWS’s Inferentia
is more cost-effective than the T4 GPU, after factoring in
a small data egress cost (shipping the first task’s output, a
0.1 GB model, from GCP to AWS with a cost of $0.01).

To understand the cost savings, we compare the detailed
time and cost per task. For training (Figure 6a), SkyPilot’s
choice of GCP TPU takes 5.4 hours and costs $57 with egress
included, which is 5.2× faster and 33% cheaper than the AWS
V100 plan. (Azure V100 is similar but has $13 for egress;
hence omitted.) To make the hardware more comparable, we

9While crude, this estimate is a reasonable approximation for throughput-
bound models with intensive matrix operations, such as ResNet.

10If we set the input 4× as large, at 600 GB, the optimizer decides against
transferring the data as the egress cost will dominate.

0 30 60 90

Cost ($)

0

10

20

30

Ti
m

e
(h

ou
rs

)

TPU

V100

4x V100

AWS
GCP (compute)
GCP (w/ egress)

(a) Training

GCP
TPU

Azure
T4

AWS
Inferentia

0

10

20

C
os

t(
$)

20
17

5
0

10

20

Ti
m

e
(h

r)

(b) Serving

Figure 6: Vision pipeline: detailed breakdown per task.

submitted the task again requesting 4 V100s on AWS to match
the FLOPS performance of a TPU v3-8: still, TPU is 1.5×
faster and 42% cheaper than 4 V100s. For serving (Figure 6b),
AWS’s custom Inferentia chip saves both cost (71%) and time
(1.8× faster) compared to the widely available T4 GPU.

Thus, clouds offer unique hardware incentives to different
tasks, even if the data is stored on a different cloud.

Optimizing for time vs. cost. To test SkyPilot’s ability to
minimize the total time rather than cost (§4.3), we resubmit
this pipeline to SkyPilot with the time-minimizing objective.
The resource selection for train remains the same. For infer,
SkyPilot now chooses GCP TPU (estimated to take 2.5 hours
and cost $21, per 108 images) over AWS Inferentia (which
was cost-optimal; estimated to take 8.2 hours and cost $3).
The estimates reflect the actual ranking in Figure 6b. Even
though the TPU costs 4× more in total than Inferentia, it
reduces inference time by 5.7×. This example shows that
optimal placements can change based on user preferences.

5.1.2 NLP Pipeline

We next run a natural language processing (NLP) pipeline
that emulates an increasingly prevalent workload: fine-tuning
“foundation models” [56]. It consists of three tasks (Figure 1):
• Confidential data processing: remove sensitive informa-

tion from raw data using Intel SGX hardware enclaves. We
use the Amazon Customer Reviews Dataset [2] and treat it
as if it contained personally identifiable information (PII)
and thus must be processed securely. To remove sensitive
data, we run Opaque [95] on an SGX-enabled instance
to filter on a column (i.e., the filtered-out information is
assumed sensitive), and output only the review texts and
star ratings. The size of the output dataset is 1 GB.

• Train: fine-tune BERT-base [59], a popular natural lan-
guage understanding model, on the preprocessed and now
non-sensitive data. This model predicts a rating given a
review text. We fine-tune the model for 10 epochs.

• Infer: use the model to classify 1M new reviews.

Setup. The first task requires Resources(intel_sgx=True),
which is currently only offered by Azure [16]. For training,
we consider either 4 V100s, or a TPU v3-8. For serving, we
consider either a T4 GPU, or AWS’s Inferentia.

Due to the confidential computing requirement, the only
possible single-cloud plan is to run all three tasks on Azure:

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 445

proc train infer egress Total

Time Azure 0.6 13.3 1.5 – 15.4
(hr.) Broker 0.6 3.8 -71% 1.4 -7% 0.03 5.8 -62%

Cost Azure 0.8 163 1.2 – 165
($) Broker 0.8 32 -80% 0.5 -58% 0.1 33.4 -80%

Table 3: NLP pipeline: run time and cost of each deployment plan.

a DC8 VM for SGX, an NC24s VM with 4 V100 GPUs for
training, and an NC8as instance with a T4 GPU for serving.

Results. Table 3 shows the time and cost comparison be-
tween the single-cloud and Broker plans. Different from be-
fore, the Broker plan for this pipeline uses all three clouds.
The search space is larger, with over 16K possibilities (§5.4).

As expected, the single-cloud plan restricts its choices of
hardware to Azure and thus results in suboptimal cost and
performance. While Azure’s Intel SGX offering is unique
for secure processing, SkyPilot allows this pipeline to lever-
age different clouds for other tasks of the same application.
SkyPilot’s optimizer picks the TPU (GCP) over 4 V100s for
training, and the Inferentia (AWS) over the T4 GPU for serv-
ing. This considerably reduces both the total run time (by
62%) and cost (by 80%) compared with the Azure-only plan.

5.2 Bioinformatics

The intercloud broker should dynamically respond to the
changing availability of resources (§4.1). We evaluate SkyP-
ilot’s handling of availability changes by modeling a real
user’s workload: A bioinformatic task of mapping DNA cells
of sequencing data [67, 92]. The jobs are independent, have
variable-sized inputs and variable run times, with each using
all CPUs within one machine. Jobs are not checkpointable
and failures require recomputation from scratch. Finally, these
jobs are recurring: there are 10s to 100s of jobs to run every
week based on incoming data. Due to long run times, this
user exclusively uses spot VMs on GCP to save costs, and has
been continuously using SkyPilot to do so for several months.

We submit 40 jobs to SkyPilot, each running on an n1-
highmem-96 spot VM on GCP for 8–12 hours. We imple-
ment and compare two policies in SkyPilot: (1) SingleRe-
gion, which retries each preempted job in other zones of the
same region—this models providers’ managed instances solu-
tions [35]; (2) Broker, which retries each preempted job in the
next cheapest region chosen by the optimizer. We start two
sets of 40 jobs together (to minimize variance due to time)
in the region with the cheapest price for this VM (us-west1).
We ensure the jobs are within quotas so all job migrations are
due to preemptions.

Overall, the Broker policy finishes significantly faster than
the SingleRegion baseline, due to experiencing fewer preemp-
tions. Figure 7 (top) shows that Broker completed 75% of
the jobs 1.6× or 7 hours faster than SingleRegion. At around
T = 16 hours, all Broker jobs finished, while 30% (12) of
SingleRegion jobs were still running. The last SingleRegion

0 4 8 12 16 20 24 28 32
0

10
20
30
40

Number of jobs completed

Broker
SingleRegion

0 4 8 12 16 20 24 28 32
Elapsed Time (hours)

0

40

80

120
Cumulative number of preemptions

Figure 7: Dynamically adjusting to availability on a bioinformat-
ics workload of 40 jobs on spot CPU VMs. Broker moves preempted
jobs to a new region, while SingleRegion moves preempted jobs to
other zones in the same region. Note the shared x-axis. Cloud: GCP.

job finished at T = 32 hours, yielding a 2× longer makespan.
Figure 7 (bottom) shows the speedup comes from Broker

incurring 5× fewer preemptions. Since both policies started
in the same region, the preemption curves initially overlapped.
Broker swiftly moved the 22 preempted jobs to another region,
which remained non-preemptive for the entire duration (e.g.,
last preemption occurred before T = 8 hours). The original
region continued to experience a high preemption rate in all
zones, causing SingleRegion to have far more stragglers.

While this example represents a good case (moving from
a region with a high preemption rate to a region with a low
preemption rate), it shows that SkyPilot can dynamically use
multiple regions to improve availability when needed. Man-
aged solutions from cloud providers, e.g., spot fleets [49] or
managed instances [35], are confined within a region and thus
cannot support such a cross-region (or cross-cloud) policy.

Finally, note that this policy is not always better than Sin-
gleRegion. For example, if the jobs started in a region with a
low preemption rate, some unlucky jobs could be preempted
and moved to a region with a higher preemption rate, which
could be worse than SingleRegion. Importantly, SkyPilot al-
lows new policies (cross-cloud/region) to be implemented
easily, and we expect this to be an area of future research.

5.3 Managed Data Analytics

So far, we demonstrated SkyPilot’s ability to use IaaS (VMs)
on different clouds. We now use the broker to run an analytics
workload on the managed analytics services of two clouds:
AWS EMR [4] and GCP Dataproc [29]. While VMs with the
same hardware on different clouds should have mostly the
same performance, we expect hosted services to exhibit more
performance variations due to differences in software. We run
TPC-DS [72] on the following (scale factor 100, or 33 GB of
data in Parquet, generated locally on each cloud):

• GCP Dataproc: which runs vanilla Spark 3.1.2, on a 3-node
n2-standard-16 cluster. Version 2.0.29-debian10.

• AWS EMR: which runs an optimized runtime [42] for

446 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

GCP
Dataproc

AWS
EMR

AWS
EMR

Graviton

0.0

0.5

1.0

C
os

t(
$)

0.98

0.56
0.43

0

10

20

Ti
m

e
(m

in
ut

es
)

(a) Data is local (99 queries)

1K 2.5K 10K
Number of queries

0

25

50

75

100

C
os

t(
$)

Dataproc
EMR
EMR Graviton
Data egress

(b) Data shipped from GCP

Figure 8: Using managed analytics services with SkyPilot. TPC-
DS. (a) Cost (left y) and time (right y) of two hosted services in three
configurations, where data is generated locally. Benefits of software
and hardware offerings can combine. Mean of 3 runs. (b) Assuming
data is stored in GCP, running more queries offsets the egress cost.

Spark 3.1.2, on a 3-node m5.4xlarge cluster. Version 6.5.0.
• AWS EMR Graviton: like above, but on a 3-node

m6g.4xlarge cluster, which uses the Graviton2 ARM-based
processors custom-designed by AWS [14]. Due to its cost-
performance benefits, several large companies such as
Netflix and Snap have moved some of their workloads
to Graviton2 from traditional x86 instances [13].

Figure 8a shows AWS EMR finishes 34% faster and 43%
cheaper than GCP Dataproc. We ensured that GCP’s n2 clus-
ter has the same or better hardware than AWS’s m5.4x cluster.
Thus, the speedup is due to EMR’s optimized software run-
time [42] for Spark, representing a unique software incentive
for users with similar analytics workloads.

In addition, AWS EMR Graviton improves both the cost
and run time over AWS EMR by 23% and 6%, respectively.
Thus, this is a case of combining the unique software and
hardware advantages to attract such workloads even more.

To understand the tradeoff between better services vs. data
gravity, Figure 8b shows the cost of running more queries
from the benchmark, assuming the data is not generated lo-
cally but initially resides in GCP and has to be copied. (Here,
we simply execute the TPC-DS benchmark’s 99 queries mul-
tiple times to increase the number of queries we ran.) With
1K queries, EMR’s speed advantage already offsets the data
transfer cost ($2.8). Running 2.5K queries yields a cost saving
of 32% for EMR and 46% for EMR Graviton, while running
10K queries yields 42% and 55% savings, respectively.

To request a managed service for a task, we specify

task.set_managed_service(
AnalyticsService(
dependencies={'Spark': '3.1.2', 'Hadoop': '3.2.1', ...},
resources=Resources(cpu=16, ram=64 * GB, num_nodes=3)))

where AnalyticsService is backed by concrete implemen-
tations such as EMR or Dataproc. The dependencies field
specifies the desired package versions for the hosted service;
such version lists are published by the cloud providers [11,26]
and recorded in SkyPilot’s service catalog.

On-demand $ Spot $

Type Hardware Zones Max/Min CV Max/Min CV

CPU
AMD (8 cores) 146 2.5× 16% 7.3× 59%
Arm (8 cores) 88 2.1× 12% 2.5× 17%
Intel (8 cores) 248 1.6× 12% 9.4× 39%

GPU

K80 (1 chip) 56 9.5× 48% 5.9× 60%
T4 (1 chip) 146 1.7× 12% 10.8× 29%
V100 (1 chip) 79 1.6× 14% 1.9× 19%
A100 (8 chips) 46 1.9× 23% 6.4× 84%

TPU
v2 (8 cores) 5 1.2× 6% 1.2× 6%
v3 (8 cores) 4 1.1× 4% 1.1× 4%

Table 4: Capturing the large heterogeneity of locations and pric-
ing in the catalog. We show for a subset of offerings, the number
of zones that provide them (out of 294 zones globally across the top
3 clouds), the pricing ratios of the most costly to the cheapest zone,
and the coefficients of variation (CV) of prices across zones. CPUs
are the latest generation in the “general-purpose” family.

5.4 Analyzing the Broker

Location and pricing heterogeneity in the catalog. We
analyze SkyPilot’s service catalog (over 76K entries) to see
how well it captures the heterogeneity in locations and prices
for all three clouds. Table 4 shows the results. We see that not
all offerings (VMs, accelerators) are present in all zones, and
there can be large price differences across zones.

Among the 294 zones across the three clouds, the latest
Intel CPUs are widely offered, but AMD is only offered in
50% of the zones, while ARM is in only 30%. CPU workloads,
e.g., bioinformatics (§5.2) and analytics (§5.3), can suffer
from up to 2.5× price premiums if run in the most expensive
zone, which increase to 9.4× if spot instances are used. These
differences are even larger for NVIDIA GPUs, which are
present in just 16–50% of all zones, and their prices vary by
up to 9.5× for on-demand and 10.8× for spot. Finally, despite
TPUs being offered only in 4–5 (or 5%) GCP zones, there is
still a 10%–20% price difference across those zones.

This significant heterogeneity in locations and pricing
makes it hard for users to manually find the best placement.
By capturing this heterogeneity, SkyPilot’s catalog enables
the optimizer to automatically exploit these differences.

Optimizer overhead. We evaluate SkyPilot’s optimizer
overhead on a variety of DAGs. Figure 9 shows the search
space sizes and the optimization time for the two ML pipelines
in §5.1 and 3 other DAGs (see below). Despite the pipelines’
simple structures (Vision, NLP), their search spaces already
have 2K–16K possible assignments, making them non-trivial
or infeasible to optimize by hand. Using the ILP, however, our
optimizer can find an optimal solution in under 1.4 seconds.

Additionally, we test on three larger and more complex
DAGs, found in Airflow’s repository [6]: the first two (Fig-
ure 10a, Figure 10b) are commonly used in the real world [68],
while the third (Figure 10c) has a more complex structure.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 447

Vision
NLP Seq

Fork

Complex
100

1020

1040

1060

1080

S
iz

e
[lo

g]

2K 16K

1034

1073

1066

(a) Search space sizes

Vision
NLP Seq

Fork

Complex
0

20

40

60

Ti
m

e
(s

ec
on

ds
)

0.9 1.4

15.7

48.246.3

(b) Optimization time

Figure 9: Search spaces and optimization times. Timing is mea-
sured on an M1 MacBook Pro; mean of 3 runs. Objective is cost.
Locations of feasible clusters are limited to all US zones on 3 clouds.

(a) Sequential (b) Fork-Join (c) Complex

Figure 10: Larger DAGs found in Airflow’s repository. (a) Se-
quential: |V | = 20, |E| = 19. (b) Fork-Join: |V | = 42, |E| = 44. (c)
Complex: |V |= 38, |E|= 53.

We assume each task requires an 8-vCPU Intel VM in US
zones, which leads to 55 feasible clusters for each task. We
assign random time estimates (sampled from U(0,1) hours)
to each task and a random data transfer size (sampled from
U(0,100) GB) to each edge. While the search spaces for the
DAGs are combinatorially large (1034–1073 possible assign-
ments), optimization takes at most 48.2 seconds. Since each
task in a DAG is coarse-grained (e.g., can take hours), this
optimization time is a negligible portion of the DAG run time.

If resource availability changes during run time, the DAG
may need to be re-optimized to generate a revised execution
plan. As the process of re-optimization involves updating the
list of feasible clusters and restarting the ILP optimization, its
overhead is comparable to that of the initial optimization.

6 Deployment Experience
We have deployed SkyPilot to dozens of users from 3 universi-
ties and 4 other organizations, who have been using the broker
to run both adhoc and recurring batch jobs in the clouds for
many months. These users have switched to the intercloud
broker from their prior solutions of manually interacting with
specific clouds, either via web consoles or low-level APIs.
Below, we discuss our experiences with the system so far
based on user feedback.

Benefits of an intercloud broker. By surveying our users,
we found that users value the broker not only for cost re-
duction, but also for improved availability (see §5.2) and in
general for improving their productivity. For example, users
like the broker’s ability to automatically provision scarce

resources across clouds or regions, the easy access to best-
of-breed hardware (e.g., TPUs), and the simple packaging
of existing programs. Moreover, by interacting with the bro-
ker rather than the clouds, they value the ability to run the
same jobs on different clouds with no change to their code or
workflow.

Cluster reuse for faster development and debugging.
Users have reported that the typical provisioning time of sev-
eral minutes for a new cluster is too long, especially during
the iterative code development phase. To alleviate this, we
added the ability to reuse existing clusters for running a new
application. This also helps the debugging of Sky applications
as the users can log into a cluster to inspect and troubleshoot.

Moving data is acceptable for many workloads. Data
gravity can prevent workloads from being moved across
clouds. However, we found that for many batch workloads,
cross-cloud data transfers are not as slow or costly as we
expected. In fact, moving data can be profitable even after
factoring in the egress (Figure 5; Figure 8).

There are several reasons for this. First, the computation
complexity of many batch jobs, such as ML training, is typi-
cally super-linear in the input size. Second, many datasets are
not excessively large. For example, a study from Microsoft
reports that most production ML datasets are between 1 GB
to 1 TB [75]. Our results (§5.1.1) suggest that a 1 TB dataset
can likely be moved in ∼20 minutes with a cost of ∼$90. De-
pending on the job, this delay and cost can be easily offset by
the destination offering better hardware, software, or pricing.

On-premise clusters as part of the Sky. Users have re-
quested the support for running jobs on on-premise clusters
through the broker. There are several benefits. First, this would
enable users to take advantage of idle local clusters and burst
to the cloud when they are overloaded. Second, the broker
would offer the same interface that hides the heterogeneity (to
the extent possible), so the same Sky applications could run
both in the cloud and locally. Challenges include designing
spillover policies and handling compatibility and storage.

7 Related Work
Sky Computing. We are not the first to use the name “Sky
Computing” as several papers, dating back to 2009, also used
this term [62, 69, 70]. However, these papers focus on par-
ticular technical solutions, such as running middleware (e.g.,
Nimbus) on a cross-cloud Infrastructure-as-a-Service plat-
form, and target specific workloads such as high-performance
computing (HPC). This paper takes a broader view of Sky
Computing, seeing it as a change in the overall ecosystem and
considering how technical trends and the market forces can
play a critical role in the emergence of Sky Computing.

The work most closely related to this paper is [81], but
here we significantly extend that work by refining the vision,
designing and building a broker, demonstrating its benefits in
several applications, and reporting on early adoption.

448 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Cross-cloud compute, storage, and egress. Super-
cloud [65] is a virtual cloud that can span multiple zones and
clouds, using nested virtualization and live VM migration
to move stateful workloads across locations. Our proposal
shares the goal of easing workload migration, but supports
migrating higher-level jobs (not VMs), considers a broader
set of cloud services in addition to IaaS, and focuses on batch
jobs by optimizing for price, performance, and availability.

There have been several proposals for cross-cloud storage
solutions. CosTLO [91] and SPANStore [90] use request re-
dundancy and replication to minimize storage access latencies.
Perhaps the most comprehensive is Gaia-X, a European ef-
fort to create a federated open data infrastructure that enables
data sharing with strong governance properties and respect-
ing data and cloud sovereignty [28]. These efforts are largely
orthogonal to our focus on computational tasks.

Several industry efforts have been started to reduce cross-
cloud data egress fees. The Bandwidth Alliance [19] is one
such effort, consisting of several cloud providers who agree
to reduce or even eliminate egress fees from their clouds to
Cloudfare or other members. Closely related is Cloudfare
R2 [24], an object store that promises to charge zero egress
fees. Naturally, Sky Computing benefits from these efforts to
combat data gravity, and the intercloud broker can be extended
to support zero-egress storage systems.

Middleware. Middleware solutions (e.g., CORBA [25], Mi-
crosoft BizTalk [37], IBM WebSphere [34], etc.) bear some
resemblance to our work. While these solutions allow sys-
tems from different vendors to communicate and interoperate,
our proposal allows an application to utilize cloud services
offered by different cloud providers.

There are several differences between these efforts and the
intercloud broker. First, we consider satisfying requirements
such as minimizing costs which have not been a concern
of these systems. Second, the intercloud broker focuses on
placing the components of the same application rather than
on how systems from different vendors interoperate. Finally,
we are operating in a cloud setting rather than a traditional
distributed system setting.

Differences aside, middleware solutions that allow cloud
services to interoperate (e.g., connect an AWS S3 bucket
with GCP Dataproc) could be considered as being part of the
compatibility set, which the intercloud broker can leverage.

Integration Platform-as-a-Service (iPaaS). Like the mid-
dleware systems discussed above, iPaaS solutions [40, 47]
also integrate distinct systems but are often run as managed
services on the cloud. iPaaS solutions provide adaptors to con-
nect APIs from different services and systems (e.g., APIs for
Snowflake, Jira, or Stripe). Developers can build workflows
on top (e.g., on receiving a new case in Salesforce, call Jira’s
API to open a ticket) and deploy them through the iPaaS.

While iPaaS can run integration workflows on the cloud,
our proposal places and runs compute-intensive jobs on the

most suitable cloud based on price, performance, and avail-
ability. Similar to middleware, iPaaS is complementary as we
can leverage these adaptors to expound the compatibility set.

Optimization for geo-distributed analytics. A line of
work has optimized the performance of geo-distributed ana-
lytics [64, 77, 86]. This setting is similar in spirit to ours: it
considers running a MapReduce-style job (an analytics query)
across many sites, while we consider running a DAG of coarse-
grained computations potentially across several clouds.

There are three main differences. First, these techniques
are system-specific optimizations, and we in general do not
assume as much knowledge about the application. Second,
these techniques mostly assume different sites to differ only
in their WAN bandwidths and otherwise have identical hard-
ware, while we exploit the inherent differences in hardware,
software, pricing, and resource availability of several clouds
or regions/zones within a cloud. Third, these solutions op-
timize for faster completion times, while we also consider
minimizing costs and improving resource availability.

That said, we note that the intercloud broker could poten-
tially leverage system-specific optimizations if it is told that
the application is of a certain type (e.g., MapReduce).

8 Conclusion
This paper describes the design, implementation, applications,
and early deployment of an intercloud broker, SkyPilot. SkyP-
ilot enables users to seamlessly run their batch jobs across
clouds to minimize cost and/or delay. We see this as the first
step towards a paradigm we call Sky Computing, which we
hope will transform the cloud computing ecosystem to better
meet user needs.

Acknowledgements. We thank the NSDI reviewers and our
shepherd, Paolo Costa, for their valuable feedback. This work
is in part supported by NSF CISE Expeditions Award CCF-
1730628 and gifts from Astronomer, Google, IBM, Intel, Lace-
work, Microsoft, Nexla, Samsung SDS, Uber, and VMware.

References
[1] Akka. https://akka.io/.

[2] Amazon customer reviews dataset. https://

s3.amazonaws.com/amazon-reviews-pds/readme.html.

[3] Amazon Elastic Kubernetes Service. https://

aws.amazon.com/eks/.

[4] Amazon EMR. https://aws.amazon.com/emr/.

[5] Anthos. https://cloud.google.com/anthos.

[6] Apache Airflow. https://airflow.apache.org/.

[7] Apache Cassandra. https://cassandra.apache.org/.

[8] Apache jclouds. https://jclouds.apache.org/.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 449

https://akka.io/
https://s3.amazonaws.com/amazon-reviews-pds/readme.html
https://s3.amazonaws.com/amazon-reviews-pds/readme.html
https://aws.amazon.com/eks/
https://aws.amazon.com/eks/
https://aws.amazon.com/emr/
https://cloud.google.com/anthos
https://airflow.apache.org/
https://cassandra.apache.org/
https://jclouds.apache.org/

[9] Apache Kafka. https://kafka.apache.org/.

[10] Apache Libcloud. https://libcloud.apache.org/.

[11] Application versions in Amazon EMR 6.x re-
leases. https://docs.aws.amazon.com/emr/latest/

ReleaseGuide/emr-release-app-versions-6.x.html.

[12] Artificial Intelligence: From the Public Cloud
to the Device Edge. https://www.equinix.com/

resources/whitepapers/nvidia-distributed-ai-

cloud-infrastructure-edge.

[13] AWS and Arm. https://www.arm.com/why-arm/partner-
ecosystem/aws.

[14] AWS Graviton Processor. https://aws.amazon.com/ec2/
graviton/.

[15] AWS Inferentia. https://aws.amazon.com/machine-

learning/inferentia/.

[16] Azure confidential computing. https://

azure.microsoft.com/en-us/solutions/confidential-

compute/.

[17] Azure HDInsight. https://azure.microsoft.com/en-

us/services/hdinsight/.

[18] Azure Kubernetes Service. https://

azure.microsoft.com/en-us/services/kubernetes-

service/.

[19] Bandwidth Alliance. https://www.cloudflare.com/

bandwidth-alliance/.

[20] BlobFuse - A Microsoft supported Azure Storage FUSE
driver. https://github.com/Azure/azure-storage-

fuse.

[21] Carbon free energy for Google Cloud regions. https:

//cloud.google.com/sustainability/region-carbon.

[22] Cerebras. https://cerebras.net/.

[23] Cloud TPU. https://cloud.google.com/tpu.

[24] Cloudflare R2. https://www.cloudflare.com/products/
r2/.

[25] Common Object Request Broker Architecture
(CORBA). https://www.omg.org/spec/CORBA.

[26] Dataproc 2.0.x release versions. https:

//cloud.google.com/dataproc/docs/concepts/

versioning/dataproc-release-2.0.

[27] Docker. https://github.com/docker.

[28] Gaia-X: A Federated Secure Data Infrastructure. https:
//www.gaia-x.eu/.

[29] Google Cloud Dataproc. https://cloud.google.com/

dataproc/.

[30] Google Cloud Storage FUSE. https:

//cloud.google.com/storage/docs/gcs-fuse.

[31] Google Cloud, Storage Transfer Service. https://

cloud.google.com/storage-transfer-service.

[32] Google Kubernetes Engine. https://cloud.google.com/
kubernetes-engine.

[33] HashiCorp State of Cloud Strategy Survey. https://

www.hashicorp.com/state-of-the-cloud.

[34] IBM WebSphere Application Server. https:

//www.ibm.com/products/websphere-application-

server.

[35] Instance groups, Google Compute Engine. https://

cloud.google.com/compute/docs/instance-groups.

[36] Kubernetes. https://github.com/kubernetes/

kubernetes.

[37] Microsoft BizTalk Server documentation. https://

learn.microsoft.com/en-us/biztalk/.

[38] MLFlow. https://mlflow.org/.

[39] MongoDB. https://github.com/mongodb/mongo.

[40] MuleSoft CloudHub. https://www.mulesoft.com/

platform/saas/cloudhub-ipaas-cloud-based-

integration.

[41] MySQL. https://www.mysql.com/.

[42] Optimize Spark performance, Amazon EMR. https:

//docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-

spark-performance.html.

[43] PostgreSQL. https://www.postgresql.org/.

[44] Presto. https://github.com/prestodb/presto.

[45] Redis. https://github.com/redis/redis.

[46] s3fs. https://github.com/s3fs-fuse/s3fs-fuse.

[47] SAP Integration Suite. https://www.sap.com/products/
technology-platform/integration-suite.html.

[48] SparkSQL. https://spark.apache.org/sql/.

[49] Spot Fleet, AWS EC2. https://docs.aws.amazon.com/

AWSEC2/latest/UserGuide/spot-fleet.html.

[50] TensorFlow XLA. https://www.tensorflow.org/xla.

[51] Terraform. https://www.terraform.io/.

450 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://kafka.apache.org/
https://libcloud.apache.org/
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-release-app-versions-6.x.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-release-app-versions-6.x.html
https://www.equinix.com/resources/whitepapers/nvidia-distributed-ai-cloud-infrastructure-edge
https://www.equinix.com/resources/whitepapers/nvidia-distributed-ai-cloud-infrastructure-edge
https://www.equinix.com/resources/whitepapers/nvidia-distributed-ai-cloud-infrastructure-edge
https://www.arm.com/why-arm/partner-ecosystem/aws
https://www.arm.com/why-arm/partner-ecosystem/aws
https://aws.amazon.com/ec2/graviton/
https://aws.amazon.com/ec2/graviton/
https://aws.amazon.com/machine-learning/inferentia/
https://aws.amazon.com/machine-learning/inferentia/
https://azure.microsoft.com/en-us/solutions/confidential-compute/
https://azure.microsoft.com/en-us/solutions/confidential-compute/
https://azure.microsoft.com/en-us/solutions/confidential-compute/
https://azure.microsoft.com/en-us/services/hdinsight/
https://azure.microsoft.com/en-us/services/hdinsight/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://www.cloudflare.com/bandwidth-alliance/
https://www.cloudflare.com/bandwidth-alliance/
https://github.com/Azure/azure-storage-fuse
https://github.com/Azure/azure-storage-fuse
https://cloud.google.com/sustainability/region-carbon
https://cloud.google.com/sustainability/region-carbon
https://cerebras.net/
https://cloud.google.com/tpu
https://www.cloudflare.com/products/r2/
https://www.cloudflare.com/products/r2/
https://www.omg.org/spec/CORBA
https://cloud.google.com/dataproc/docs/concepts/versioning/dataproc-release-2.0
https://cloud.google.com/dataproc/docs/concepts/versioning/dataproc-release-2.0
https://cloud.google.com/dataproc/docs/concepts/versioning/dataproc-release-2.0
https://github.com/docker
https://www.gaia-x.eu/
https://www.gaia-x.eu/
https://cloud.google.com/dataproc/
https://cloud.google.com/dataproc/
https://cloud.google.com/storage/docs/gcs-fuse
https://cloud.google.com/storage/docs/gcs-fuse
https://cloud.google.com/storage-transfer-service
https://cloud.google.com/storage-transfer-service
https://cloud.google.com/kubernetes-engine
https://cloud.google.com/kubernetes-engine
https://www.hashicorp.com/state-of-the-cloud
https://www.hashicorp.com/state-of-the-cloud
https://www.ibm.com/products/websphere-application-server
https://www.ibm.com/products/websphere-application-server
https://www.ibm.com/products/websphere-application-server
https://cloud.google.com/compute/docs/instance-groups
https://cloud.google.com/compute/docs/instance-groups
https://github.com/kubernetes/kubernetes
https://github.com/kubernetes/kubernetes
https://learn.microsoft.com/en-us/biztalk/
https://learn.microsoft.com/en-us/biztalk/
https://mlflow.org/
https://github.com/mongodb/mongo
https://www.mulesoft.com/platform/saas/cloudhub-ipaas-cloud-based-integration
https://www.mulesoft.com/platform/saas/cloudhub-ipaas-cloud-based-integration
https://www.mulesoft.com/platform/saas/cloudhub-ipaas-cloud-based-integration
https://www.mysql.com/
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-spark-performance.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-spark-performance.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-spark-performance.html
https://www.postgresql.org/
https://github.com/prestodb/presto
https://github.com/redis/redis
https://github.com/s3fs-fuse/s3fs-fuse
https://www.sap.com/products/technology-platform/integration-suite.html
https://www.sap.com/products/technology-platform/integration-suite.html
https://spark.apache.org/sql/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/spot-fleet.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/spot-fleet.html
https://www.tensorflow.org/xla
https://www.terraform.io/

[52] The Cloud Imperative For Software and Platforms,
Accenture. https://www.accenture.com/_acnmedia/

PDF-139/Accenture-The-Cloud-Imperative-Software-

Platforms-Industry.pdf.

[53] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng
Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Geoffrey Irving, Michael Isard, et al.
TensorFlow: A system for large-scale machine learn-
ing. In Proceedings of the 12th USENIX Symposium on
Operating Systems Design and Implementation (OSDI).
Savannah, Georgia, USA, 2016.

[54] Omid Alipourfard, Hongqiang Harry Liu, Jianshu Chen,
Shivaram Venkataraman, Minlan Yu, and Ming Zhang.
Cherrypick: Adaptively unearthing the best cloud config-
urations for big data analytics. In 14th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 17), pages 469–482, 2017.

[55] Joe Armstrong. Making reliable distributed systems in
the presence of software errors. PhD thesis, Mikroelek-
tronik och informationsteknik, 2003.

[56] Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ
Altman, Simran Arora, Sydney von Arx, Michael S Bern-
stein, Jeannette Bohg, Antoine Bosselut, Emma Brun-
skill, et al. On the opportunities and risks of foundation
models. arXiv preprint arXiv:2108.07258, 2021.

[57] Paris Carbone, Stephan Ewen, Gyula Fóra, Seif Haridi,
Stefan Richter, and Kostas Tzoumas. State management
in Apache Flink: Consistent stateful distributed stream
processing. Proc. VLDB Endow., 10(12):1718–1729,
August 2017.

[58] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang,
Minjie Wang, Tianjun Xiao, Bing Xu, Chiyuan Zhang,
and Zheng Zhang. MXNet: A flexible and efficient
machine learning library for heterogeneous distributed
systems. In NIPS Workshop on Machine Learning Sys-
tems (LearningSys’16), 2016.

[59] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. BERT: Pre-training of Deep Bidi-
rectional Transformers for Language Understanding.
arXiv preprint arXiv:1810.04805, 2018.

[60] John Forrest and Robin Lougee-Heimer. Cbc user guide.
In Emerging theory, methods, and applications, pages
257–277. INFORMS, 2005.

[61] Richard J Forrester and Noah Hunt-Isaak. Computa-
tional comparison of exact solution methods for 0-1
quadratic programs: Recommendations for practitioners.
Journal of Applied Mathematics, 2020, 2020.

[62] José A.B. Fortes. Sky computing: When multiple clouds
become one. In 2010 10th IEEE/ACM International
Conference on Cluster, Cloud and Grid Computing,
pages 4–4, 2010.

[63] Benjamin Hindman, Andy Konwinski, Matei Zaharia,
Ali Ghodsi, Anthony D. Joseph, Randy Katz, Scott
Shenker, and Ion Stoica. Mesos: A platform for fine-
grained resource sharing in the data center. In Pro-
ceedings of the 8th USENIX Conference on Networked
Systems Design and Implementation, NSDI’11, pages
295–308, Berkeley, CA, USA, 2011. USENIX Associa-
tion.

[64] Chien-Chun Hung, Ganesh Ananthanarayanan, Leana
Golubchik, Minlan Yu, and Mingyang Zhang. Wide-area
analytics with multiple resources. In Proceedings of the
Thirteenth EuroSys Conference, pages 1–16, 2018.

[65] Qin Jia, Zhiming Shen, Weijia Song, Robbert Van Re-
nesse, and Hakim Weatherspoon. Supercloud: Opportu-
nities and challenges. ACM SIGOPS Operating Systems
Review, 49(1):137–141, 2015.

[66] Eric Liang, Richard Liaw, Robert Nishihara, Philipp
Moritz, Roy Fox, Ken Goldberg, Joseph E. Gonzalez,
Michael I. Jordan, and Ion Stoica. RLlib: Abstractions
for distributed reinforcement learning. In International
Conference on Machine Learning (ICML), 2018.

[67] Hanqing Liu, Jingtian Zhou, Wei Tian, Chongyuan Luo,
Anna Bartlett, Andrew Aldridge, Jacinta Lucero, Ju-
lia K Osteen, Joseph R Nery, Huaming Chen, Ange-
line Rivkin, Rosa G Castanon, Ben Clock, Yang Eric Li,
Xiaomeng Hou, Olivier B Poirion, Sebastian Preissl, An-
tonio Pinto-Duarte, Carolyn O’Connor, Lara Boggeman,
Conor Fitzpatrick, Michael Nunn, Eran A Mukamel,
Zhuzhu Zhang, Edward M Callaway, Bing Ren, Jesse R
Dixon, M Margarita Behrens, and Joseph R Ecker. DNA
methylation atlas of the mouse brain at single-cell reso-
lution. Nature, 598(7879):120–128, October 2021.

[68] Ashraf Mahgoub, Edgardo Barsallo Yi, Karthick
Shankar, Sameh Elnikety, Somali Chaterji, and Saurabh
Bagchi. ORION and the three rights: Sizing, bundling,
and prewarming for serverless DAGs. In 16th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI 22), pages 303–320, 2022.

[69] A. Matsunaga, J. Fortes, K. Keahey, and M. Tsugawa.
Sky computing. IEEE Internet Computing, 13(05):43–
51, sep 2009.

[70] André Monteiro, Joaquim S. Pinto, Cláudio J. V. Teix-
eira, and Tiago Batista. Sky computing: Exploring the
aggregated cloud resources - part i. In Conference: In-
formation Systems and Technologies (CISTI), 2021.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 451

https://www.accenture.com/_acnmedia/PDF-139/Accenture-The-Cloud-Imperative-Software-Platforms-Industry.pdf
https://www.accenture.com/_acnmedia/PDF-139/Accenture-The-Cloud-Imperative-Software-Platforms-Industry.pdf
https://www.accenture.com/_acnmedia/PDF-139/Accenture-The-Cloud-Imperative-Software-Platforms-Industry.pdf

[71] Philipp Moritz, Robert Nishihara, Stephanie Wang,
Alexey Tumanov, Richard Liaw, Eric Liang, Melih Eli-
bol, Zongheng Yang, William Paul, Michael I. Jordan,
and Ion Stoica. Ray: A distributed framework for emerg-
ing AI applications. In 13th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
18), Carlsbad, CA, 2018. USENIX Association.

[72] Raghunath Othayoth Nambiar and Meikel Poess. The
Making of TPC-DS. In Proceedings of the 32nd Inter-
national Conference on Very Large Data Bases, VLDB
’06, page 1049–1058. VLDB Endowment, 2006.

[73] Deepak Narayanan, Keshav Santhanam, Fiodar
Kazhamiaka, Amar Phanishayee, , and Matei Zaharia.
Analysis and exploitation of dynamic pricing in the
public cloud for ml training. VLDB DISPA Workshop
2020.

[74] OpenAI. AI and Compute. https://openai.com/blog/

ai-and-compute/, 2018.

[75] Kwanghyun Park, Karla Saur, Dalitso Banda, Rathijit
Sen, Matteo Interlandi, and Konstantinos Karanasos.
End-to-end optimization of machine learning prediction
queries. In Proceedings of the 2022 International Con-
ference on Management of Data, SIGMOD ’22, page
587–601, New York, NY, USA, 2022. Association for
Computing Machinery.

[76] Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming Lin,
Alban Desmaison, Luca Antiga, and Adam Lerer. Auto-
matic differentiation in PyTorch. 2017.

[77] Qifan Pu, Ganesh Ananthanarayanan, Peter Bodik,
Srikanth Kandula, Aditya Akella, Paramvir Bahl, and
Ion Stoica. Low latency geo-distributed data analytics.
ACM SIGCOMM Computer Communication Review,
45(4):421–434, 2015.

[78] Hang Qi, Evan R Sparks, and Ameet Talwalkar. Paleo:
A performance model for deep neural networks. Interna-
tional Conference on Learning Representations (ICLR),
2016.

[79] Alexander Sergeev and Mike Del Balso. Horovod: fast
and easy distributed deep learning in tensorflow. arXiv
preprint arXiv:1802.05799, 2018.

[80] Statista. Infographic: Amazon leads $150-billion
cloud market. https://www.statista.com/chart/

18819/worldwide-market-share-of-leading-cloud-

infrastructure-service-providers/.

[81] Ion Stoica and Scott Shenker. From cloud computing to
sky computing. In Proceedings of the Workshop on Hot
Topics in Operating Systems, HotOS ’21, page 26–32,

New York, NY, USA, 2021. Association for Computing
Machinery.

[82] Douglas Thain, Todd Tannenbaum, and Miron Livny.
Distributed computing in practice: the condor experi-
ence. Concurrency and computation: practice and ex-
perience, 17(2-4):323–356, 2005.

[83] Alexey Tumanov, Angela Jiang, Jun Woo Park,
Michael A Kozuch, and Gregory R Ganger. Jamaisvu:
Robust scheduling with auto-estimated job runtimes.
Parallel Data Laboratory, Carnegie Mellon University,
Tech. Rep., 2016.

[84] Shivaram Venkataraman, Zongheng Yang, Michael
Franklin, Benjamin Recht, and Ion Stoica. Ernest: Effi-
cient performance prediction for large-scale advanced
analytics. In 13th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 16), pages
363–378, 2016.

[85] Abhishek Verma, Luis Pedrosa, Madhukar Korupolu,
David Oppenheimer, Eric Tune, and John Wilkes. Large-
scale cluster management at google with borg. In Pro-
ceedings of the Tenth European Conference on Com-
puter Systems, pages 1–17, 2015.

[86] Raajay Viswanathan, Ganesh Ananthanarayanan, and
Aditya Akella. Clarinet: Wan-aware optimization for
analytics queries. In OSDI, volume 16, pages 435–450,
2016.

[87] Sarah Wang and Martin Casado. The Cost
of Cloud, a Trillion Dollar Paradox. https:

//a16z.com/2021/05/27/cost-of-cloud-paradox-

market-cap-cloud-lifecycle-scale-growth-

repatriation-optimization/.

[88] Joe Weinman. Intercloudonomics: Quantifying the
value of the intercloud. IEEE Cloud Computing,
2(5):4047, September 2015.

[89] Tom White. Hadoop: The Definitive Guide. O’Reilly
Media, Inc., 2012.

[90] Zhe Wu, Michael Butkiewicz, Dorian Perkins, Ethan
Katz-Bassett, and Harsha V. Madhyastha. Spanstore:
Cost-effective geo-replicated storage spanning multi-
ple cloud services. In Proceedings of the Twenty-
Fourth ACM Symposium on Operating Systems Prin-
ciples, SOSP ’13, page 292–308, New York, NY, USA,
2013. Association for Computing Machinery.

[91] Zhe Wu, Curtis Yu, and Harsha V. Madhyastha.
CosTLO: Cost-Effective redundancy for lower latency
variance on cloud storage services. In 12th USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI 15), pages 543–557, Oakland, CA,
May 2015. USENIX Association.

452 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://openai.com/blog/ai-and-compute/
https://openai.com/blog/ai-and-compute/
https://www.statista.com/chart/18819/worldwide-market-share-of-leading-cloud-infrastructure-service-providers/
https://www.statista.com/chart/18819/worldwide-market-share-of-leading-cloud-infrastructure-service-providers/
https://www.statista.com/chart/18819/worldwide-market-share-of-leading-cloud-infrastructure-service-providers/
https://a16z.com/2021/05/27/cost-of-cloud-paradox-market-cap-cloud-lifecycle-scale-growth-repatriation-optimization/
https://a16z.com/2021/05/27/cost-of-cloud-paradox-market-cap-cloud-lifecycle-scale-growth-repatriation-optimization/
https://a16z.com/2021/05/27/cost-of-cloud-paradox-market-cap-cloud-lifecycle-scale-growth-repatriation-optimization/
https://a16z.com/2021/05/27/cost-of-cloud-paradox-market-cap-cloud-lifecycle-scale-growth-repatriation-optimization/

[92] Zizhen Yao, Hanqing Liu, Fangming Xie, Stephan Fis-
cher, Ricky S Adkins, Andrew I Aldridge, Seth A Ament,
Anna Bartlett, M Margarita Behrens, Koen Van den
Berge, Darren Bertagnolli, Hector Roux de Bézieux,
Tommaso Biancalani, A Sina Booeshaghi, Héctor Cor-
rada Bravo, Tamara Casper, Carlo Colantuoni, Jonathan
Crabtree, Heather Creasy, Kirsten Crichton, Megan
Crow, Nick Dee, Elizabeth L Dougherty, Wayne I Doyle,
Sandrine Dudoit, Rongxin Fang, Victor Felix, Olivia
Fong, Michelle Giglio, Jeff Goldy, Mike Hawrylycz,
Brian R Herb, Ronna Hertzano, Xiaomeng Hou, Qi-
wen Hu, Jayaram Kancherla, Matthew Kroll, Kanan
Lathia, Yang Eric Li, Jacinta D Lucero, Chongyuan
Luo, Anup Mahurkar, Delissa McMillen, Naeem M
Nadaf, Joseph R Nery, Thuc Nghi Nguyen, Sheng-Yong
Niu, Vasilis Ntranos, Joshua Orvis, Julia K Osteen,
Thanh Pham, Antonio Pinto-Duarte, Olivier Poirion, Se-
bastian Preissl, Elizabeth Purdom, Christine Rimorin,
Davide Risso, Angeline C Rivkin, Kimberly Smith,
Kelly Street, Josef Sulc, Valentine Svensson, Michael
Tieu, Amy Torkelson, Herman Tung, Eeshit Dhaval
Vaishnav, Charles R Vanderburg, Cindy van Velthoven,
Xinxin Wang, Owen R White, Z Josh Huang, Pe-
ter V Kharchenko, Lior Pachter, John Ngai, Aviv Regev,
Bosiljka Tasic, Joshua D Welch, Jesse Gillis, Evan Z Ma-
cosko, Bing Ren, Joseph R Ecker, Hongkui Zeng, and
Eran A Mukamel. A transcriptomic and epigenomic
cell atlas of the mouse primary motor cortex. Nature,
598(7879):103–110, October 2021.

[93] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das,
Ankur Dave, Justin Ma, Murphy McCauley, Michael J
Franklin, Scott Shenker, and Ion Stoica. Resilient dis-
tributed datasets: A fault-tolerant abstraction for in-
memory cluster computing. In Proceedings of the 9th
USENIX conference on Networked Systems Design and
Implementation, pages 2–2. USENIX Association, 2012.

[94] Lianmin Zheng, Zhuohan Li, Hao Zhang, Yonghao
Zhuang, Zhifeng Chen, Yanping Huang, Yida Wang,
Yuanzhong Xu, Danyang Zhuo, Eric P. Xing, Joseph E.
Gonzalez, and Ion Stoica. Alpa: Automating inter- and
Intra-Operator parallelism for distributed deep learning.
In 16th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI 22), pages 559–578,
Carlsbad, CA, July 2022. USENIX Association.

[95] Wenting Zheng, Ankur Dave, Jethro G. Beekman,
Raluca Ada Popa, Joseph E. Gonzalez, and Ion Stoica.
Opaque: An oblivious and encrypted distributed analyt-
ics platform. In Proceedings of the 14th USENIX Con-
ference on Networked Systems Design and Implemen-
tation, NSDI’17, page 283–298, USA, 2017. USENIX
Association.

A Appendix
A.1 Implications and Economics of the Sky

While the body of this paper was firmly rooted in what an
intercloud broker could offer now, we turn our attention to
the future and ask: what are the implications of the Sky for
the future cloud ecosystem? This section is inherently more
speculative, so we have included it as an appendix to provide
some context for where we think this approach could take us.

A.1.1 Embracing Diversity

While there is an increase in limited interface compatibility,
in the overall ecosystem there is an increasing diversity in
terms of location and hardware. The aforementioned regu-
latory concerns require greater flexibility in location; Sky
Computing provides an easy way to specify the necessary
location constraints. However, there are two other important
location considerations. First, some tasks should be run on
nearby edge clouds to lower latencies between client and
cloud. Second, some tasks should be on on-premise clusters,
rather than public clouds, to lower costs (see [87] for an ar-
gument as to why this is crucial). These concerns can be met
by bringing edge and on-premise clouds into the Sky. The
intercloud broker could then automatically send jobs to the
closest edge cloud (if lowering latency is important) or to the
on-premise cloud (if lowering costs is important and there is
enough capacity).

In addition, by allowing users to specify specific hardware
requirements in their request, one can automatically seek out
clouds that have the appropriate hardware support. Or one can
merely ask for high performance, and the intercloud broker
will find the highest-performing cloud for that task, regardless
of how they achieve it. Thus, Sky Computing turns the diver-
sity of the current clouds from an impediment to an advantage:
as long as one cloud meets a user’s needs in terms of location
or hardware or other constraints, the intercloud broker will
find it.

A.1.2 Economic Analysis

For analytical convenience here we assume that in the future
clouds will fall into two categories. Some clouds will remain
proprietary, offering their own APIs for some tasks and charg-
ing for data egress in an attempt to keep customers tied to
their cloud. However, others will join the Sky and become a
commodity cloud in that they fully embrace the open source
interfaces and do reciprocal data peering with other clouds
that have joined the Sky. The economic choice facing clouds
is which of these alternatives they choose. Note that even
proprietary clouds can be used by the intercloud broker, but
doing so may entail data egress charges.

The choice facing consumers is which of these two types
of clouds they choose to use: do they send their workloads to
a single proprietary cloud, or do they let the intercloud broker
find which clouds to run on? In what follows, we assume
that users attempt to optimize some measure of price and

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 453

performance of each task; we will denote this metric by P2,
and define it so that smaller values are better. The relative
importance of price and performance will differ between users,
but we do not address that here as it overcomplicates the
analysis without adding much insight; instead, we assume
all users attempt to minimize the same measure P2. We now
analyze, in a vastly oversimplified model, how the ecosystem
of clouds might evolve given this consumer behavior.

Denote by R the set of proprietary clouds and denote by
S the set of commodity clouds (i.e., the Sky). Assume that
the workload from user α consists of a set of tasks j, with a
weight or frequency wα

j that represents the fraction of their
workload that consist of task j. Note that this analysis can
either apply to individual applications (which involve a DAG
of tasks), or an overall workload.

The P2 of task j on cloud c is denoted by Pc
j . If a cloud

does not support that task, Pc
j is set to be infinite. Let P̃c

j be the
P2 taking into account the delays (and perhaps egress charges,
if a proprietary cloud is used) in sending data between dif-
ferent clouds. We then define Pj and P̃j as the minimal P2’s
achievable (the latter taking into account the extra inter-cloud
delays and cost, and the former not): Pj = minc∈S∪R[Pc

j] and
P̃j = minc∈S∪R[P̃c

j].
Assume for simplicity that these workloads are either sent

to the Sky (i.e., placement determined by the intercloud bro-
ker), or to a single proprietary cloud. Given these assumptions,
if the workload is sent to a proprietary cloud, the user α will
choose the cloud c ∈ R that minimizes ∑ j wα

j Pc
j ; call this

cloud c(α). If sent to the Sky, then the overall P2 is ∑ j wα
j P̃j.

Given our assumptions, a user will pick between c(α) and
the Sky, depending on whether the sum ∑ j wα

j [P
c(α)
j − P̃j] is

positive (Sky) or negative (proprietary cloud c(α)). Note that
since by definition Pj ≤ Pc(α)

j this can only be negative if the
inter-cloud delays or costs are significant.

The question a cloud faces is whether to join the Sky or
not. If it remains a proprietary cloud, the only customers it
gains are those for whom its overall average P2 is best: i.e.,
for those users for whom it is c(α). If it joins the Sky, it gains
revenue for each task j where its performance is best among
the clouds (taking into account the inter-cloud delays).

Assuming most users have a broad workload including
many tasks, this analysis suggests that a cloud should only
remain proprietary if it can compete across a broad collection
of tasks. Joining the Sky becomes the rational choice for
clouds who realize they cannot compete broadly, but can find
narrower market niches (i.e., sets of tasks) where they excel.

Note that two proprietary clouds compete in a zero-sum
manner: for users sending their workloads to proprietary
clouds, either one gets the business or the other. Sky clouds
compete in a much different way. Of course, they all compete
to provide the best P2 implementations for each task. How-
ever, a cloud providing a superior solution for one type of
task helps a cloud focusing on other types of tasks, because

users will only use the Sky if the overall service they get is
better than that on proprietary clouds. Thus, the ecosystem
of Sky clouds combines competition on each task type with
collaboration to provide high-quality support across a broad
spectrum of tasks. This is the interdependence in the Sky.

This analysis is obviously oversimplified in many dimen-
sions. For instance, users make different tradeoffs between
cost and delay, and workloads are more complicated than
just a linear combination of tasks. However, none of these
considerations undercut the general observation above that
proprietary clouds must be prepared to compete across a wider
range of tasks (since their egress charges and proprietary in-
terfaces purposely reduce the likelihood of users offloading
to other clouds).

For a fledging cloud provider, it seems clear that joining
the Sky is the preferable choice. These new clouds can con-
centrate on narrow sets of tasks where they can compete
favorably with existing commodity and proprietary clouds,
and they need not worry about marketing as the intercloud
brokers will seek out the best P2 available.

None of these results are surprising, as the intercloud broker
effectively sets up a two-sided market. Two-sided markets
are common, and they are typically opposed by market actors
who have high margins and want to preserve them, but are
welcomed by those struggling to get a foothold in the market
and who cannot otherwise overcome the inherent advantages
of the dominant market players (such as much better name
recognition, much larger sales forces, etc.). In the current
cloud market only Amazon and perhaps Azure can be seen as
having dominant market positions; all other cloud providers
have less than 10% of the market [80]. For all of these other
cloud providers, which comprise roughly half of the current
cloud market, the Sky may be the preferable choice.

A.1.3 Speculation

In many ways, the intercloud broker is merely a mechanism
that turns cloud computing into a more competitive market.
However, efforts to create the Sky will be for naught if the cur-
rently dominant clouds remain dominant and proprietary even
after the intercloud broker is put in place. Here we speculate
briefly on the factors that will play a critical role in how the
competition plays out. We start with four basic assumptions:
Sky-based clouds may innovate faster: Sky clouds need
not market their technologies; they merely need to post faster
speeds and/or lower prices for various workloads. Thus, the
intercloud broker itself speeds innovation because workloads
will automatically follow the better P2s, no matter how they
arose. In addition, Sky clouds can focus their innovative ener-
gies on narrow classes of tasks where they might have special
expertise (e.g., Oracle for databases) or special hardware (e.g.,
Samsung for storage, Google for TPUs, NVIDIA for GPUs).
In fact, this is already happening; see the recent announce-
ments by Nvidia, Equinix, and Cirrascale [12].
Large clouds have economies of scale: There are undeni-

454 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

able advantages to operating a cloud at scale, such as greater
leverage with suppliers and the ability to amortize various in-
frastructure costs over larger deployments. These advantages
may be the single biggest barrier to the success of Sky.
Infrastructure providers might provide smaller clouds
with better economies of scale: Infrastructure providers,
such as Equinix, who have experience in building out clouds
and who can amortize infrastructure costs, can help smaller
clouds with deployment. This will not match the economies
of scale of the largest clouds, but will allow small clouds to
be deployed with reasonable efficiency.
Small clouds are not necessarily small companies: One
worry is that the proprietary clouds would engage in predatory
pricing to prevent the Sky from emerging. However, many
companies that will deploy Sky-based clouds will be using
them as showcases for their technology (Samsung for storage,
Oracle for database workloads, etc.), and they have very deep
pockets. So predatory pricing will actually hurt the large
clouds more than the smaller ones (because they have smaller
market share, their losses are smaller).

Based on these assumptions, the crucial question is whether
the rate of innovation of the smaller clouds (which can be
more narrowly targeted) is sufficient to compensate for their
disadvantage in economies of scale (which is mitigated by
infrastructure providers). We have no wisdom to offer on this
central but speculative question. However, with innovative
companies like Google, IBM, and Alibaba counted as “small
clouds” likely to join the Sky rather than remain proprietary,
we believe that there is a significant chance that the Sky could
emerge as an economically viable alternative to the current
cloud ecosystem.

A.2 ML Training on Spot Instances Across Clouds

In §5.1 we evaluated SkyPilot’s benefits for ML pipelines;
here, we show an additional experiment to demonstrate that
SkyPilot can run a single ML training job on spot instances
across clouds, improving resource availability and reducing
costs. In the event of spot instance preemptions, SkyPilot
supports migrating a job to another zone, region, or cloud
where spot instances are available. We consider training a
BERT model with a V100 GPU on a subset of Wikipedia,
WikiText-103 (0.5 GB), for 30 epochs. For failure recovery,
we save the current model checkpoint (1.5 GB) periodically to
a persistent storage. Each epoch runs for around 40 minutes
and each checkpointing incurs an overhead of 0.5 minutes.

We evaluate three different strategies to run the job:
• On-Demand: runs on an on-demand instance on AWS.
• SingleRegion: runs on a spot instance in a single AWS

region, us-east-1.11

• Broker: runs on a spot instance, with SkyPilot having the
freedom to choose among all US regions of AWS or GCP.

11We chose it as it had the lowest preemption rate at the time of experiment
among all US regions. Spot hourly price was $0.91, vs. on-demand’s $3.06.

5 10 15 20 25 30 35
Wall Time (hours)

2.5

3.0

3.5

V
al

id
at

io
n

L
os

s AWS (us-east-1)

GCP (us-central1)

On-Demand

SingleRegion

Broker

Figure 11: Loss curves of training BERT on V100 for 30 epochs.
Each x marker is a preemption event; gaps between segments are
the time periods when spot instances are not available. After the first
preemption event, Broker migrates the job from AWS us-east-1 to
GCP us-central1, while SingleRegion waits in the same region.

Cost Makespan
On-Demand $61.2 20 hrs
SingleRegion $21.8 34 hrs
Broker $18.4 21 hrs

Table 5: Costs and makespan for the three strategies to finish BERT
training. Data transfer and checkpointing overheads are included.

For a fair comparison, we launch all strategies at the same
time and in the same starting region. With SingleRegion, if no
spot instances are available in the region when a preemption
happens, it waits until they become available again and then
resumes the job from the latest checkpoint. With Broker, if
no spot instances are available it immediately triggers re-
optimization and searches for availability in other regions and
clouds; if found, SkyPilot transfers the data/model checkpoint
to the new location and resumes the job there. The cost of
each data and checkpoint egress across clouds is $0.2.

Figure 11 plots the validation loss curve for each strategy.
Around hour 6, the spot instances used by both the SingleRe-
gion and Broker strategies get preempted. SingleRegion sticks
with the same region (us-east-1), but needs to wait for 3
hours (dashed line) to get a new spot instance. In contrast,
Broker searches for spot instances in other AWS regions,
which fail to provide capacity, before finding availability in
GCP’s us-central1 region. After hour 6, the SingleRegion
job experiences several more preemptions which cause further
delays. Overall, the delays from using a single region adds
more than 10 hours to the completion time.

Table 5 shows the total cost and makespan for the three
strategies. Broker finishes∼40% faster than SingleRegion be-
cause it can leverage spot instance availability across regions
and clouds. Moreover, Broker is 10% cheaper than SingleRe-
gion: despite the cross-cloud data egress costs incurred by
Broker, the faster recovery time and fewer preemptions (thus,
less lost progress) reduce the overall cost compared to Sin-
gleRegion. Compared to On-Demand, Broker saves 70% cost
due to lower spot prices, while incurring a minimal overhead
in makespan (∼5%) due to job recovery and checkpointing.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 455

	Introduction
	Related Concepts and Recent Developments
	Why Not Just Adopt Standards?
	Why Isn't This Just Multicloud?
	Growth In Interface Compatibility

	The Vision of Sky Computing
	What Is Sky Computing?
	Why Is This Transformational?

	Intercloud Broker
	Requirements
	Architecture
	SkyPilot: An Implementation

	Experiments
	Machine Learning Pipelines
	Vision Pipeline
	NLP Pipeline

	Bioinformatics
	Managed Data Analytics
	Analyzing the Broker

	Deployment Experience
	Related Work
	Conclusion
	Appendix
	Implications and Economics of the Sky
	Embracing Diversity
	Economic Analysis
	Speculation

	ML Training on Spot Instances Across Clouds

