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Abstract

In the past five years or so, numerous blockchain projects have made tremendous progress
towards improving permissioned consensus protocols (partly due to their promised applications
in Proof-of-Stake cryptocurrencies). Although a significant leap has silently taken place in our
understanding of consensus protocols, it is rather difficult to navigate this body of work, and
knowledge of the new techniques appears scattered.

In this paper, we describe an extremely simple and natural paradigm called Streamlet for
constructing consensus protocols. Our protocols are inspired by the core techniques that have
been uncovered in the past five years of work; but to the best of our knowledge our embodiment
is simpler than ever before and we accomplish this by taking a “streamlining” idea to its full
potential. We hope that our textbook constructions will help to decipher the past five years
of work on consensus partly driven by the cryptocurrency community — in particular, how
remarkably simple the new generation of consensus protocols has become in comparison with
classical mainstream approaches such as PBFT and Paxos.
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1 Introduction

Distributed consensus allows a set of players to agree on an ever-growing, linearly ordered log of
transactions. For over a decade, companies like Google and Facebook have deployed consensus as
part of their core infrastructure, to replicate mission-critical services such as Google Wallet and
Facebook Credit. Consensus is also the core abstraction behind modern cryptocurrency systems
such as Bitcoin and Ethereum. Since transactions are typically batched into “blocks” during
consensus, we also refer to such protocols as blockchain protocols. The name “blockchain” gained
popularity with Bitcoin. Before Bitcoin, such consensus protocols were commonly referred to as
State Machine Replication protocols [3, 14,24].

As we all know, by leveraging Proof-of-Work (PoW), Bitcoin’s Nakamoto consensus [9,19,21,23]
was the first to achieve consensus in a “permissionless” environment where everyone can join as a
participant. However, partly due to the enormous energy waste of PoW, the community has been
pushing for a new paradigm called Proof-of-Stake (PoS), where, roughly speaking, players have
voting power proportional to their stake (i.e., in terms of cryptocurrencies owned) in the system.
Interesting, as many works have shown [6,7,12], PoS systems actually return to the classical roots
of consensus, that is, they rely instead on “permissioned” consensus as a core building block. In
essence, these PoS systems typically employ a committee reconfiguration mechanism to rotate the
consensus participants over time based on the latest stake distribution; and at any snapshot in
time, the elected participants run a permissioned consensus protocol. This paradigm shift towards
PoS rekindled the community’s interest in classical, permissioned consensus.

In this paper, we focus on how to construct a simple, permissioned consensus protocol called
Streamlet. Streamlet realizes the same abstraction as classical landmark protocols such as
PBFT [3] and Paxos [14] — however, unlike the classical counterparts, Streamlet is absurdly
simple, making it a perfect choice for pedagogy. Considering several decades of work that aimed
to simplify the PBFT/Paxos family of protocols (notably, RAFT [20] and other efforts [17,27]), it
might be somewhat surprising at first that such a remarkably simple and natural protocol turns
out to be possible.

1.1 Streamlet in a Nutshell and Our Contributions

It is perhaps most instructive to present the protocol upfront. Let us briefly recall the setting:
there are n players participating in the consensus protocol, and their public keys are well-known
(i.e., the classical “permissioned” setting). We assume that strictly fewer than n/3 players can be
corrupt, and corrupt players can deviate from the prescribed protocol arbitrarily and maliciously.
We assume that players have synchronized clocks1 and that the protocol proceeds in synchronized
epochs, each of which is, say, 1 second long (the “1 second” parameter can be replaced with other
reasonable choices and we shall discuss how to choose this parameter shortly). Although we assume
synchronized clocks, the protocol achieves consistency (i.e., safety) regardless of how long the
message delays are or how badly the network might be partitioned.

1It is well-known that in a partially synchronous network, as long as players have clocks with bounded drift, it is
possible to employ a simple clock synchronization procedure to establish a synchronized clock [8]. In this work, for
simplicity, we assume synchronized clocks. The clock synchrony will only be needed for our liveness proof but not
consistency.
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Figure 1: Streamlet finalization example. In this example, the prefix of the top chain up to
the epoch-6 block is considered final.

The protocol. In Streamlet, each epoch has a designated leader chosen at random by a
publicly known hash function. We assume that a valid blockchain is a sequence of blocks crypto-
graphically “chained” together by a hash function, i.e., each block contains a hash of its prefix.
Now, the Streamlet protocol works as follows:

• Propose-Vote. In every epoch:

– The epoch’s designated leader proposes a new block extending from the longest notarized chain
it has seen (if there are multiple, break ties arbitrarily). The notion “notarized” is defined
below.

– Every player votes for the first proposal they see from the epoch’s leader, as long as the
proposed block extends from (one of) the longest notarized chain(s) that the voter has seen.
A vote is a signature on the proposed block.

– When a block gains votes from at least 2n/3 distinct players, it becomes notarized. A chain is
notarized if its constituent blocks are all notarized.

• Finalize. Notarized does not mean final. If in any notarized chain, there are three adjacent
blocks with consecutive epoch numbers, the prefix of the chain up to the second of the three
blocks is considered final. When a block becomes final, all of its prefix must be final too.

Importantly, the entire protocol follows a unified propose-vote paradigm, making it very natural
and leaving (seemingly) no room for misinterpretation. In comparison, the classical mainstream
approach [3, 10, 13, 14, 18, 18, 20] typically adopts a simple fast path that follows a “propose-vote”
paradigm, but the fast path provides no liveness in the face of faults. To achieve liveness in the
presence of faulty nodes, classical mainstream approaches resort to an additional, often compli-
cated/subtle recovery path (see Section 1.2 for more discussion).

How does Streamlet achieve both consistency and liveness with a unified propose-vote paradigm?
The somewhat cute finalization rule is part of the “magic”. An example of applying the finalization
rule is shown in Figure 1. In this example, imagine all blocks are notarized: we see that there is a
notarized chain with 3 adjacent blocks having consecutive epoch numbers 5, 6, and 7. Therefore,
the entire prefix of the chain up to and including the epoch-6 block is considered final (i.e., all
transactions contained in these blocks are confirmed and cannot be undone).

We shall prove later that in this case, there cannot be another conflicting block X notarized
at the same length (i.e., position in the blockchain, or distance from the ‘genesis block’) as the
epoch-6 block, and thus consistency is achieved. We now state the protocol’s provable guarantees
(slightly informally at this point).
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Provable guarantees. In the remainder of the paper, we will describe the Streamlet protocol
slightly more formally, and prove that this extremely simple protocol

1. achieves consistency no matter what the actual network delays are, even if the network is
partitioned at times;

2. achieves liveness with expected constant confirmation delay when network conditions are good,
i.e., during a period of time in which honest nodes can send messages back and forth to each
other within a 1-second round-trip time.

The conditions under which liveness holds are often referred to as a period of synchrony [8].
Obviously, if the network is partitioned and nodes cannot deliver messages to each other, the
protocol cannot make progress. The Streamlet protocol guarantees consistency nonetheless, no
matter how bad or adversarial the network conditions are. In the literature, protocols satisfying
such properties are often said to be partially synchronous [8] and partition tolerant. It is well-
known that partially synchronous protocols cannot tolerate 1/3 or more corruptions [8] and thus
the protocol described above achieves optimal resilience.

How do we set the epoch length? The epoch length is typically set to be an estimate of the
message round-trip time under normal/good network conditions.

Variants. With very minor tweaks, we obtain a couple variants:

• An honest-majority, synchronous variant. With a couple minor tweaks, we obtain a new
protocol and prove it secure under honest majority in a synchronous network — note that
due to the 1/3 partially synchronous lower bound [8], network synchrony assumptions are
indeed necessary for resisting minority corruptions.

The tweaks include 1) requiring ≥ n/2 signatures for notarization; 2) looking for 6 consecutive
epochs in a notarized chain and chopping off 5 for finalization2; furthermore, at finalization
time, checking to make sure that the 6 blocks at consecutive epochs do not have conflicting
notarizations at the same lengths.

• A crash-fault tolerant, honest majority variant. Taking the protocol above, changing the
notarization threshold to > n/2 and removing the use of signatures, would give a crash-fault
tolerant version secure under honest majority. This variant is also perfect for pedagogy: one
can teach it without introducing digital signatures.

1.2 Comparison with Prior Approaches

Classical mainstream protocols: simple fast path + complicated recovery. Classical
mainstream approaches such as PBFT [3], Paxos [14], and their numerous variants [10, 13, 18, 20],
adopt a bi-modal approach: the protocol typically consists of a simple normal path where a leader
makes proposals and everyone votes; and when the normal path fails, the protocol switches to a
(typically much more complicated) fall-back mode typically called a “view change” [3]. From a
technical perspective, the normal path promises only consistency and offers no liveness if the leader

2These constants can be reduced at the expense of introducing a couple more instructions to the protocol descrip-
tion; our goal in this paper is not to make these constants the smallest possible, but to make the protocol description
as simple as possible. In Section 4, we will briefly discuss how one can make these constants smaller.
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is corrupt; whereas the view change protocol must essentially embed a “full-fledged” consensus sub-
protocol that offers both consistency and liveness. As such, the complexity of classical protocols
such as PBFT and Paxos arises due to the view change.

For decades, researchers have made it a top priority to simplify these consensus protocols, and
various attempts have been made [15,20,27].

Recent wave of work motivated by decentralized blockchains. Very recently, due to in-
terest in decentralized cryptocurrencies, various blockchain projects made independent efforts to
simplify consensus protocols [2,4,5,11,25,28]. As mentioned, more recently, the community’s focus
has been on permissioned consensus protocols due to the paradigm shift towards Proof-of-Stake.
This line of work is known to be difficult to navigate partly due to the use of disparate terminology.
Streamlet draws inspiration from many protocols [2,4,5,26,28] that came out during this wave.
For example, our finalization rule is inspired by Casper [2], Hotstuff [28], Pili [5], and Pala [4].

Although the simplicity of the Streamlet protocol makes it kind of trivial and obvious in
hindsight, it took the community several years of effort and multiple iterations to eventually strip
the protocol down to its current form. Therefore we hope that the simplicity and the multiple
iterations of efforts do not detract from our contribution.

Most closely related work. The closest related work is the very recent work by Shi [26]. Their
work, which is in turn inspired by others’ [2, 4, 5, 28], is an important step towards the same goal,
i.e., to have a unified, simple protocol for both teaching and implementation. The main difference
between our protocol and theirs is the following: in their protocol, blocks in a valid blockchain have
an additional property called freshness. A block’s freshness is determined by the epoch in which it
is notarized. In Shi’s protocol [26], a voter has to compare a proposed block against the freshest
notarized chain seen at the beginning of the previous epoch, to determine whether it is okay to vote
on the block. In private communication with the author, we learned that this protocol rule has
caused confusion during lectures and also for engineers who implemented a protocol [4] similar to
Shi’s proposal [26].

Streamlet completely eliminates the freshness notion, and voters simply compare the proposed
block with the longest notarized chain(s) that it has seen at the time of voting — a change that
also simplifies the consistency proof.

Sequential composition of single-shot consensus. Finally, Byzantine Agreement or Byzan-
tine Broadcast [16] is a single-shot consensus abstraction often studied in the theoretical literature.
An alternative for constructing a blockchain is through sequential/parallel composition of single-
shot consensus. However, cross-instance pipelining is difficult to accomplish in practice. Partly due
to this reason, to the best of our knowledge, most practically deployed schemes employ the “di-
rect blockchain construction” approach. Typically, in a directly constructed blockchain, the entire
protocol is streamlined and there is no clear-cut boundary between single-shot instances. Directly
constructed blockchains are often easier to optimize in practice.

Streamlet is a directly constructed blockchain, and we take the streamlining idea to its
extreme, such that the entire protocol is a streamlined, unified path of “propose-vote” actions.

Non-goals. We are aware that some earlier works have strived to minimize the confirmation delay,
e.g., Sync-Hotstuff [1]. We stress that minimizing the concrete constants related to confirmation
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delay is not a goal of our paper. In this paper, we instead take simplicity and understandability
to be first-class principles. Having said this, we briefly discuss in Section 4 how to reduce the
constants by introducing just a couple extra instructions to the Streamlet protocol.

In this paper, we focus on static security. We refer the reader to existing works [4, 7] that
present somewhat generic approaches for upgrading from static security to adaptive security or
mildly adaptive security [22], e.g., in a Proof-of-Stake context.

2 Execution Model and Definitions

Execution model. Let us briefly define the execution model. There are in total n nodes num-
bered 1, 2, . . . , n respectively, and let [n] := {1, 2, . . . , n}. All nodes have a public key that is
common knowledge. Each node retains its own secret key for signing messages.

The adversary may control a subset of the nodes which are said to be corrupt, and the re-
maining nodes not under adversarial control are honest. Honest nodes always faithfully follow the
prescribed protocol but corrupt nodes can deviate from the prescribed protocol arbitrarily (often
called Byzantine faults). We assume that the adversary chooses which nodes to corrupt prior to
the execution, i.e., we consider the static corruption model.

A protocol’s execution proceeds in rounds, which we use to denote a basic unit of time. The
adversary can arbitrarily delay messages sent by honest nodes. We require “periods of synchrony”
for liveness, modeling them using the standard Global Stabilization Time (GST) approach [8].
Roughly speaking, before the GST, message delays can be arbitrary; however, after GST, messages
sent by honest nodes are guaranteed to be received by honest recipients within ∆ number of rounds.
More precisely, we assume the following:

∆-bounded assumption during periods of synchrony: When an honest node sends a mes-
sage in round r, an honest recipient is guaranteed to receive it by the beginning of round
max(GST, r + ∆).

Definition of a blockchain protocol. Nodes participating in a blockchain protocol receive
inputs (e.g. transactions) from an external environment. The nodes are tasked with maintaining
an ordered log, called a blockchain, containing a sequence of strings called blocks (note that a
blockchain protocol is allowed to define additional validity rules for its blockchain data structure).
At any point of time, a node’s output is the blockchain it maintains. Henceforth if a node p outputs
some blockchain ch at some time, we also say that p considers ch final, or that ch is the finalized
chain for node p.

Without loss of generality, we may assume that the protocol guarantees that a node p’s output
chain never decreases in length — given any protocol Π in which a node p’s output chain may
decrease in length, we can always compile it to a modified protocol Π′ in which if any node p’s
output is ever going to shrink in length in Π, p would simply stick to the present, longer output.

We require that a blockchain protocol satisfies consistency and liveness as defined below with
all but negligible (in some security parameter) probability over the choice of the random execution.

• Consistency. If two blockchains ch and ch′ are ever considered final by two honest nodes, it
must be that either ch � ch′ or ch′ � ch where “�” means “is a prefix of or equal to”.

• Liveness. If some honest node receives some input txs in round r, txs will eventually be
included in all honest nodes’ finalized chains.
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3 The Streamlet Protocol: Partially Synchronous

In this section, we present our protocol formally and prove its correctness.

3.1 Epoch and Leader Rotation

Epochs: The protocol runs sequentially in synchronized epochs that are each 2∆ long. Recall
that the parameter ∆ determines when a period of synchrony occurs. During a period of synchrony,
honest nodes can communicate with each other in at most ∆ rounds.

Epoch leader: Every epoch e is mapped to a random leader using a public hash function H :
{0, 1}∗ → [n] which is modeled as a random oracle. Specifically, epoch e’s leader is computed as
H(e).

3.2 Blocks and Blockchain

Block: Each block is a tuple of the form (h, e, txs) where

• h is called the parent hash, i.e., a hash of the prefix of the chain;

• e is called the epoch number of the block, which records the epoch in which the block is proposed
and voted on; and

• tx is a payload string (e.g., it may record a set of transactions to be confirmed).

A special block of the form (⊥, e = 0,⊥) is called the genesis block which is the first block of
every valid blockchain.

Blockchain: A blockchain chain is a sequence of blocks starting with the genesis block chain[0] :=
(⊥, e = 0,⊥), and with strictly increasing epoch numbers. Throughout we use chain[`] to refer to
the `th block in chain, and chain[: `] to refer to the prefix of chain ending at (and including) the
block chain[`].

For a blockchain chain to be valid, it must be that for every non-genesis block chain[`] where
` > 0, chain[`] contains a parent hash equal to H∗(chain[: `−1]), where H∗ denotes a hash function
that was chosen from a collision-resistant hash family during a setup phase.

In a valid blockchain, we often say that a block chain[`] extends from the parent chain chain[:
`− 1]. Moreover, the block chain[`] is also said to have length `, where ` is its ‘distance’ from the
genesis block. The chain itself is also said to have a length, equivalent to the number of blocks in
chain excluding the genesis block.

Remark 1 (The hash-chain data structure). If we assume that the adversary did not find any
hash collisions during the lifetime of the protocol, then the hash-chained data structure guarantees
that given a block, its prefix is uniquely determined.

Remark 2 (A practical optimization). Although we write H∗(chain[: `]) for conceptual simplicity,
in practice, H∗ is typically implemented as an incremental hash (rather than having to hash the
entire prefix chain for every block). In other words, each block’s parent hash h may be computed
simply as a hash of the parent block, which contains a hash of its own parent, and so on.
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3.3 Votes and Notarization

A vote on a block is simply the node’s signature on the block. A collection of at least 2n/3 signatures
from distinct nodes on the same block is called a notarization on the block. If a node i has observed
a notarization for some block, that block is said to be notarized in i’s view.

A valid blockchain is considered to be notarized by a node i if i has observed a notarization for
every block in the blockchain (except for the genesis block).

3.4 Protocol

Although not explicitly stated, we make an implicit echoing assumption:

Implicit echoing: upon observing a new transaction or message, a node always echos the trans-
action or message to everyone else.

We use the notation {m}pk−1
i

to denote a message m, along with node i’s signature on m. With

this in mind, we now describe the Streamlet protocol3.

The Streamlet blockchain protocol (< 1/3 corrupt, partially synchronous)

For each epoch e = 1, 2, . . .:

• Propose: At the beginning of epoch e, epoch e’s leader L does the following: let chain
be (any one of) the longest notarized chain(s) that the leader has seen so far, let h :=
H∗(chain), and let txs be the set of unconfirmed pending transactions.

The leader L sends to everyone the proposed block {(h, e, txs)}pk−1
L

extending from the

parent chain chain.

• Vote: During the epoch e, every node i does the following. Upon receiving the first
proposal {(h, e, txs)}pk−1

L
from epoch e’s leader L, vote for the proposed block iff it extends

from one of the longest notarized chains that node i has seen at the time.

To vote for the proposed block (h, e, txs), node i simply sends to everyone {(h, e, txs)}pk−1
i

.

Finalize: On seeing three adjacent blocks in a notarized blockchain with consecutive epoch
numbers, a node can finalize the second of the three blocks, as well as its entire prefix chain.

Note that when a block is finalized by a node i, the block and its entire prefix chain shows up
the i’s local finalized log; all the transactions contained in the block and its prefix are confirmed
and can never be undone in the future.

In sum, the entire protocol follows a propose-vote paradigm, with a somewhat natural but also
“magical” finalization rule. We give an example of the finalization rule below to aid understanding.

Example. To aid understanding, we illustrate the finalization rule in Figure 1. In this example,
all blocks are notarized, and in the top chain, we have three adjacent blocks with consecutive epoch
numbers 5, 6, and 7. In this case, we can finalize the entire prefix chain “⊥ - 2 - 5 - 6”.

3Throughout, we assume that if a node receives ill-formed or unanticipated messages, they are discarded or queued
until they become anticipated. For example, an epoch-e proposal signed by a non-leader of epoch e is discarded.
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To argue consistency, we will later prove that there cannot be a conflicting block notarized at the
same length (i.e., distance from the genesis block) as the block with epoch 6, and thus the bottom
chain “⊥ - 1 - 3” basically cannot grow further. In the figure, this is denoted as the crossed-out
block for an arbitrary epoch X.

3.5 Consistency

For simplicity, henceforth we shall assume that both the signature scheme and the collision-resistant
hash function H∗ are ideal, i.e., there are no signature forgeries and no hash collisions.

We first give a simple proof for the above example — then the full, formal proof basically follows
by changing the parameters in our argument to general ones. For completeness, we present the full
proof in the Appendix (Section B).

In the example shown in Figure 1, we want to show that there cannot be any other conflicting
block notarized at the same length as the block 6.

Suppose for the sake of contradiction that indeed some other conflicting block got notarized at
the same length as block 6, e.g., the block with epoch number X. The following lemma says that
X must either be greater than 7 or smaller than 5. We will use the term “in honest view” to mean
that some honest node observes it at some time during the protocol execution.

Lemma 1 (Unique notarization per epoch). Suppose that f < n/3. Then, for each epoch e, there
can be at most one notarized block for epoch e in honest view.

Proof. Suppose that two blocks B and B′, both of epoch e, are notarized in honest view. It must be
that at least 2n/3 nodes, denoted the set S, signed the block B, and at least 2n/3 nodes, denoted
the set S′, signed the block B′. Since there are only n nodes in total, S ∩S′ must have size at least
n/3, and thus at least one honest node is in S ∩ S′. According to our protocol, every honest node
votes for at most one block per epoch. This means that B = B′.

Because of Lemma 1, the conflicting block notarized at the same length as block 6 must have
an epoch number either greater than 7 or smaller than 5. We will therefore consider the two cases
one by one, and the proofs for the two cases are nearly identical.

Case 1: X < 5. Since block X is notarized, it means that more than n/3 honest nodes, denoted
S, voted for block X and not only so, at the time of the voting (that is, during epoch X < 5),
they must have observed block 3 notarized. Now the honest nodes in S will not vote for block 5
during epoch 5, since it fails to extend a longest notarized chain seen, which is block 3 or longer.
Since f < n/3, this means that block 5 can never get notarized in honest view. This leads to a
contradiction.

Case 2: X > 7. Since block 7 is notarized, more than n/3 honest nodes (denoted the set S)
must have seen a notarized block 6 by the time they vote for block 7 (i.e., by the end of epoch
7). As a result, by in epoch X > 7, the set S of nodes must have seen block 6 notarized and will
not vote for block X, since block X now fails to extend the longest notarized chain seen (which is
block 6 or longer). Therefore block X cannot gain 2n/3 votes, and it cannot be notarized, which
is a contradiction.

The above consistency proof was for our specific example earlier, but it can easily be generalized
to the following statement.
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Lemma 2 (Main consistency lemma). If some honest node sees a notarized chain with three ad-
jacent blocks B0,B1,B2 with consecutive epoch numbers e, e + 1, and e + 2, then there cannot be a
conflicting block B 6= B1 that also gets notarized in honest view at the same length as B1.

Proof. Essentially the same as the argument above, but with generalized parameters rather than
6, 7, and 8. We defer the proof to the Appendix, in Section B Lemma 14.

Lemma 2 leads to the following consistency theorem. Recall that “�” means “is a prefix of or
equal to”, and that the chain[: `] notation refers to a prefix of chain ending at (and including) block
chain[`].

Theorem 3 (Consistency). Suppose that chain and chain′ are two notarized chains in honest view
both ending at three blocks with consecutive epoch numbers. Denote the length of chain as `, and the
length of chain′ as `′. Moreover, suppose that ` ≤ `′. It must be that chain[: `− 1] � chain′[: `′− 1].

Proof. Suppose chain[: ` − 1] is not a prefix of or equal to chain′[: `′ − 1]. Then it must be that
chain[` − 1] 6= chain′[` − 1]; in other words, they have different blocks at length ` − 1. However,
Lemma 2 precludes both of chain[`− 1] and chain′[`− 1] from getting notarized in honest view.

The consistency proof holds regardless of network timing. By examining the entire proof,
it is not hard to see that the consistency proof holds no matter what the actual network message
delays are, and even if honest nodes’ clocks are not synchronized (as long as the epoch numbers are
monotonically increasing). Of course, if the network is partitioned and honest nodes’ messages are
being held up, then we cannot guarantee progress. As explained in the following section, liveness
ensues during “periods of synchrony”, i.e., during a period of time in which honest nodes can deliver
messages back and forth within a round-trip time of 1 second (i.e., equal to the epoch length).

3.6 Liveness

3.6.1 Liveness Theorem

Recall that after GST, the network enters a period of synchrony, i.e., honest nodes can deliver
messages to each other within ∆ rounds.

The following theorem states that after GST, whenever there are 5 consecutive epochs all with
honest leaders, liveness ensues.

Theorem 4 (Liveness). After GST, suppose that there are 5 consecutive epochs e, e+1, . . . , e+4 all
with honest leaders, then, by the beginning of epoch e + 5, every honest node must have observed a
new final block that was not final at the beginning of epoch e. Moreover, this new block was proposed
by an honest leader.

Before we prove the liveness theorem, let us first try to understand it intuitively. Recall that
earlier in our protocol, we need a notarized chain to have three adjacent blocks with consecutive
epoch numbers to finalize blocks. You might wonder why in the liveness theorem above, we require
5 consecutive epochs with honest leaders (during a period of synchrony) to make progress. At a
very high level, we first need a couple honest leaders to “undo” the damage that corrupt leaders
have done, so that the following three honest leaders can successfully notarize three consecutive
blocks. We formalize this intuition below.
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Since the epoch leaders are randomly chosen by a hash function (modeled as a random oracle),
a fixed sequence of 5 consecutive epochs will all have honest leaders with Θ(1) probability. In other
words, after GST, transactions can be confirmed in an expected constant number of rounds.

3.6.2 Liveness Proof

In the remainder of this section, we will focus on proving the liveness theorem (i.e., Theorem 4).
First, because of the aforementioned implicit echoing as well as the ∆-bounded assumption

during periods of synchrony, the following fact is immediate:

Fact 1 (Strong ∆-bounded message delivery for periods of synchrony). If an honest node observes
a message in round r, then all honest nodes will have observed the message at the beginning of
round max(GST, r + ∆).

Fact 2. Suppose that some honest node i has observed a notarization for a block B at the beginning
of round r. It must be that at the beginning of round max(GST, r+ ∆), every honest node has seen
a notarized chain ending at B.

Proof. Some honest node j must have signed the block B in or before round r, and thus j must
have observed B’s parent chain notarized (henceforth denoted ch) by the beginning of round r.

By Fact 1, all honest nodes will have observed the notarized parent chain ch as well as a
notarization for B by max(GST, r + ∆).

Fact 3. Suppose that after GST, there are two epochs e and e+ 1 both with honest leaders denoted
Le and Le+1 respectively, and suppose that Le and Le+1 each proposes a block at lengths `0 and `1
respectively in epochs e and e + 1 respectively, it must be that `1 ≥ `0 + 1.

Proof. At the beginning of the round4 ∆ into epoch e, every honest node will have observed Le’s
proposal for epoch e comprising of a block B at length `0. Moreover, due to Fact 1, the parent
chain of B that triggered Le to propose B must have been observed by every honest node at the
beginning of the round ∆ into epoch e.

Every honest node will sign this proposal unless by the beginning of round ∆ into epoch e it
has already observed a conflicting notarized chain of length `0 (in other words, B does not extend
from one of the longest notarized chains seen so far). Now there are two cases:

1. If at least one honest node, say i, has observed a conflicting notarized chain of length `0 by
round ∆ of epoch e, then due to Fact 1, by the beginning of epoch e + 1, every honest node
must have seen a notarized chain of length `0.

2. If no honest node has seen a conflicting notarized chain of length `0 by round ∆ of the epoch,
then all honest nodes will sign Le’s proposal in or before round ∆ of the epoch e. Thus by
the beginning of epoch e+1, every honest node will have observed the notarized chain ending
at B of length `0.

Therefore, the honest Le+1 must propose a block at length `0 + 1 or greater.

Lemma 5 (Main liveness lemma). After GST, suppose there are three consecutive epochs (e, e +
1, e + 2) all with honest leaders denoted Le, Le+1, and Le+2, then the following holds — below we
use B to denote the block proposed by Le+2 during epoch e + 2:

4The initial round of an epoch is numbered round 0.
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a) by the beginning of epoch e+ 3, every honest node will observe a notarized chain ending at B
(and B was not notarized before the beginning of epoch e);

b) furthermore, no conflicting block B′ 6= B with the same length as B will ever get notarized in
honest view.

Proof. Let `0, `1, `2 be the respective lengths of the proposals made by Le, Le+1, and Le+2 in epochs
e, e + 1, and e + 2 respectively. By Fact 3, `2 > `1 > `0. Recall that B is the block proposed by
Le+2 in epoch e + 2 whose length is `2. We now argue that by the beginning of epoch e + 3, no
honest node signed a conflicting B′ 6= B at the same length as B. Suppose that this is not true and
some honest node i∗ signed a conflicting B′ 6= B at length `2 by the beginning of epoch e+ 3. Now,
i∗ cannot have signed B during epochs e, e+ 1, or e+ 2 since Le and Le+1 cannot have proposed a
block at length `2 in epochs e and e+ 1 respectively by Fact 3, and Le+2 proposed B 6= B′ in epoch
e + 2.

Therefore, the honest node i∗ must have signed B before epoch e started, and at this time i∗

must have observed a notarized parent chain ending at length `2− 1. Due to Fact 1, this notarized
parent chain ending at length `2− 1 must have been observed by all honest nodes by the beginning
of epoch e + 1. Therefore, Le+1 must propose a block at length at least `2. Thus we have reached
a contradiction.

Since by the beginning of epoch e + 3, no honest node has signed any B′ 6= B at length `2, at
this time there cannot be a notarization for any B′ 6= B at length `2 in honest view. Moreover,
Le+2’s proposal and the notarized parent chain that triggered the proposal will be observed by all
honest nodes at the beginning of round ∆ into epoch e + 2. Therefore all honest nodes will sign
and multicast B in or before round ∆ into epoch e + 2. Thus by the beginning of epoch e + 3, all
honest nodes will have seen a notarization for B. Thus, no honest node will ever sign any conflicting
B′ 6= B at length `2 after the start of epoch e + 3 either; and any conflicting B′ 6= B at length `2
cannot ever gain notarization in honest view.

Now, we can restate and prove Theorem 4.

Additional notation. Henceforth if B is a block, the notation |B| denotes the length of B.

Theorem 6 (Liveness). After GST, suppose that there are 5 consecutive epochs e, e+1, . . . , e+4 all
with honest leaders, then, by the beginning of epoch e + 5, every honest node must have observed a
new final block that was not final at the beginning of epoch e. Moreover, this new block was proposed
by an honest leader.

Note that every time a new block proposed by an honest leader becomes final, this creates an
opportunity for outstanding transactions to be incorporated into honest nodes’ finalized chain —
specifically, in our protocol, an honest node always proposes a new block containing all outstanding
transactions it has seen.

Proof. Due to Lemma 5, by the beginning of epoch e + 5, the blocks proposed by Le+2, Le+3,
and Le+4, henceforth denoted B2, B3, and B4, will be notarized in every honest node’s local view.
Moreover, these blocks cannot have been notarized in honest view before the beginning of epoch e,
and no conflicting blocks can ever be notarized in honest view at the lengths `2 := |B2|, `3 := |B3|,
and `4 := |B4|.
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We now show that B3 must extend from the parent chain ending at B2 and similarly B4 must
extend from the parent chain ending at B3. To see this, notice that by Lemma 5, at the beginning
of epoch e + 3, the notarized parent chain ending at B2 must have been observed by all honest
nodes and no honest node can have observed any notarized chain that is longer, or any different
notarized chain of the same length. Thus Le+3’s proposal must extend from the chain ending at
B2. Similarly Le+4’s proposal must extend from the chain ending at B3.

Now, by the finality rule, at the beginning of epoch e + 5, the block proposed by Le+3 will be
considered final by every honest node.

4 Streamlet: Synchronous, Honest Majority

We now show that by making a couple minor tweaks to the protocol described earlier, we can obtain
an honest-majority protocol that is secure in a synchronous network. A synchronous network is
one in which the ∆-bounded message delivery assymption always holds, i.e., the entire execution is
during a period of synchrony. Due to the lower bound by Dwork et al. [8], such a network synchrony
assumption is necessary (for consistency) to tolerate n/3 or more corruptions.

4.1 Protocol

The new protocol is described below, with the modifications highlighted in red. Unless otherwise
stated, in this section, all definitions and notations (including the definition of valid blocks and
valid blockchains, leader election, etc.) are the same5 as in Section 3.

The Streamlet blockchain protocol (honest majority, synchronous)

Notarization for a block B: a collection of signatures on B at least n/2 distinct nodes.

For every epoch e = 1, 2, . . .:

• Propose. At the beginning of epoch e, epoch e’s leader L does the following: let chain be
(any one of) the longest notarized chain(s) that the leader has seen so far, let h := H∗(chain),
and let txs be the set of unconfirmed pending transactions.

The leader L sends to everyone the proposed block {(h, e, txs)}pk−1
L

extending from the parent

chain chain.

• Vote. During the epoch e, every node i does the following. Upon receiving the first valid
proposal {(h, e, txs)}pk−1

L
from epoch e’s leader L, vote for the proposed block iff it extends

from one of the longest notarized chains it has seen at the time.

To vote for the proposed block (h, e, txs), node i simply sends to everyone {(h, e, txs)}pk−1
i

.

Finalize: At any time, upon observing a notarized chain such that the last 6 blocks have con-
secutive epoch numbers, and moreover no notarizations have been observed for any conflicting

5Although we do not impose any restrictions on the epoch numbers in a valid blockchain, it is not hard to show
that for our synchronous honest-majority protocol, in any notarized chain, the epochs must be non-decreasing.
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block at the same lengths of the last 6 blocks, then, the prefix of chain removing the last 5
blocks is considered final.

Remark 3 (A variant: 4 consecutive blocks, chop off trailing 3). In the synchronous Streamlet
blockchain protocol described above, we need to wait for 6 blocks with consecutive epoch numbers
and chop off the trailing 5 for finalization.

We note that there are easy ways to tighten this constant 6; however, our philosophy in this
paper is to convey a protocol that is easiest to understand rather than tightening this constant
to the best it can be (e.g., by adding a couple more instructions to the protocol description).
We believe that simple protocols should facilitate optimizations. To elaborate on this point, we
point out a simple tweak to our above protocol allows for finalization when the last 4 blocks have
consecutive epoch numbers, finalizing the first of those 4 blocks (if no competing notarizations were
observed for any of those 4 blocks).

The tweak is as follows: insist that the proposal and votes are sent at the beginning of the first
and second super-rounds of the epoch, respectively where each super-round is a span of ∆ rounds.
Now, it is not hard to show a tighter version of Fact 4 for this modified protocol, that is if an honest
node votes for some block in epoch e, then all honest nodes will observe it by the beginning of the
“Vote” super-round of epoch e+1 (instead of the current e+2). In this way, the liveness theorem
would require only 6 consecutive epochs with honest leaders for progress to ensue.

4.2 Proofs

4.2.1 Consistency Proof

Unlike Section 3, for our honest majority protocol, the consistency proof must now rely on network
synchrony.

Fact 4. Suppose that some block B of epoch e is notarized in honest view, it must be that by the
beginning of epoch e + 2, every honest node has observed the parent chain of B notarized.

Proof. Since B is notarized in honest view, at least n/2 nodes have signed B in epoch e, and since
f < n/2, then at least one honest node i must have signed B in epoch e. Moreover, i must have
observed the parent chain for B notarized in epoch e. By our Fact 1, every honest node will have
observed the parent chain notarized by the beginning of epoch e + 2.

Lemma 7. Suppose that there is a notarized chain in honest view containing two adjacent blocks
chain[`] and chain[` + 1] at consecutive epoch numbers e and e + 1 respectively, then, no block of
length ` and epoch greater than e + 2 can be notarized in honest view.

Proof. By Fact 4, every honest node will have observed a notarized chain chain[: `] that is a valid
parent of chain[` + 1] by the beginning of epoch e + 3. This means that no honest node will sign
any block of length ` or smaller in epoch e + 3 or greater. Thus no block at length ` and of epoch
greater than e + 2 can be notarized in honest view.

Theorem 8 (Consistency). Suppose that two notarized chains chain and chain′ of lengths ` and `′

respectively both triggered the finalization rule in some honest node’s view, that is, chain[: `−5] and
chain′[: `′−5] are finalized in honest view. Without loss of generality, suppose that |chain| ≤ |chain′|.
It must be that chain[: `− 5] � chain′[: `′ − 5].
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Proof. Suppose that this is not true, it must be that chain′[`−5] 6= chain[`−5] and thus chain′[`−4] 6=
chain[`−4]. Let e−5, e−4, . . . , e be the epochs of chain[`−5], chain[`−4], . . . , chain[`] respectively.
By Lemma 7, chain′[` − 4] must be of epoch e′ ≤ e − 2. By Fact 4, by the beginning of epoch
e′ + 2 ≤ e, every honest node will have observed a notarized parent chain chain′[: `− 5]. Obviously
chain[`] cannot gain notarization in honest view before epoch e. This means that when any honest
node observes a notarization for chain[`], it must also have observed a notarization for chain′[`− 5].
Thus no honest node will successfully apply the finalization rule to chain due to this conflicting
notarization for chain′[`− 5] and this leads to a contradiction.

4.2.2 Liveness Proof

Fact 2, Fact 3, and Lemma 5 of Section 3 still hold (with identical proofs) for our new synchronous,
honest-majority scheme — with the difference that now, GST starts at the beginning of the exe-
cution, i.e., the network synchrony assumption holds throughout.

Theorem 9 (Liveness). Suppose that there are 8 consecutive epochs e, e + 1, . . . , e + 7 all with
honest leaders, then by the beginning of epoch e + 7, every honest node must have observed a new
final block that was not final at the beginning of epoch e.

Proof. The proof follows in the same way as that of Theorem 6, additionally observing that there
cannot ever be any conflicting notarizations in honest view at the same lengths as the blocks
proposed by Le+2, Le+3, . . ., Le+7 due to Lemma 5.
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A Streamlet for Crash Faults

In this section, we present a version of Streamlet for the crash fault setting, tolerating f < n/2
crash faults in a partially synchronous setting, and forgoing the need for cryptography. This is
also the optimal resilience for crash faults in a partially synchronous network [8]. This crash-
tolerant variant can be taught without needing to teach digital signatures, and is also well-suited
for performance-hungry applications where faults are benign and the delay of digital signing may
be unacceptable.

A.1 Execution Model

In prior sections, we considered faulty nodes that are malicious in nature and can deviate arbitrarily
from the protocol. In this section, we consider a weaker adversary that can only cause crash faults,
also known as stopping failures.

The model is the same as in Section 2, with two main differences. First, nodes no longer have
cryptographic keys. We do, however, continue to assume that the n nodes are numbered 1, 2, . . . , n
respectively, and that each node knows its own number, henceforth referred to as its id.

Second, the adversary now has the following, more restricted power. The adversary (as before)
can corrupt a subset of the nodes partaking in the protocol prior to the start of the protocol —
these nodes are said to be faulty, while the remaining nodes are said to be honest. All nodes follow
the prescribed protocol, but faulty nodes may crash at a time of the adversary’s choice during
the protocol execution. A crashed node halts all further local execution. A node may crash in
the middle of sending a message to other nodes - so it is possible that during a round in which a
message sender crashes, only a subset of the intended messages get delivered, even during periods
of synchrony. For instance, a faulty node may try to send a vote to every other node in some round
r, but if it crashes in round r, it may be that only a subset of those votes are actually sent.

We continue to use the same model of partial synchrony as before, guaranteeing the ∆-bounded
message delivery assumption after GST only for honest (or non-faulty) nodes.
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A.2 Streamlet for Crash Faults

We now present a variant of Streamlet that tolerates f < n/2 crash faults, and this crash-tolerant
variant does not use cryptography. We first define votes and notarizations.

Definition 1 (Vote). A vote on a block B is the tuple (vote,B, id), where id is the id of the sender.
We say that a node ‘votes’ for a block if it sends a vote for that block to every other node.

Definition 2 (Notarization). A collection of at > n/2 votes with distinct node ids for the same
block is called a notarization for the block. A valid blockchain is considered to be notarized by a
node i if i has observed a notarization for every block (except the genesis block).

Other definitions remain the same. We remind the reader that the length of a block B, denoted
|B|, is equivalent to the length of the valid blockchain that terminates at block B (excluding the
genesis block).

Protocol. As before, we make an implicit echoing assumption:

Implicit echoing: upon observing a new transaction or message, a node always echos the trans-
action or message to everyone else.

The crash-tolerant version of Streamlet is shown in the figure below. Essentially the protocol
is the same as in Section 3, except that the threshold of notarization is changed to > n/2 and
messages are no longer signed.

Streamlet Protocol (< 1/2 crash failures, partially synchronous)

The protocol proceeds in incrementing epochs where each epoch is 2∆ rounds.

For each epoch e = 1, 2, . . . ,

1. Propose. At the beginning of epoch e, epoch e’s leader L sends to everyone a new
proposed block (H∗(chain), e, txs), where the parent chain is any of the longest notarized
chains seen so far by L, and where txs is the set of unconfirmed pending transactions. In
addition, L sends to everyone the notarized parent chain.

2. Vote. Every player does the following during epoch e: When a player receives a proposed
block from L for epoch e for the first time, along with its notarized parent chain, the
player ‘votes’ for the proposed block i.f.f. it is strictly longer than any notarized chain
that the player has seen thus far.

Finality rule. If at any time, a player sees three consecutive notarized blocks with consecutive
epoch numbers, the player finalizes the second of the three blocks, and its entire parent chain.
Whenever requested, the player outputs the longest finalized chain it has seen thus far.

A.3 Consistency

In this section we present a consistency proof for the crash-fault tolerant protocol. The proof itself
is essentially the same as the analysis for the malicious setting - with modifications to account for
the new fault-tolerance threshold and a different notarization threshold.
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We will use the term “in honest view” to mean that some honest (i.e. non-faulty) node observes
the specified message at some time during the protocol execution.

Lemma 10 (Unique notarization per epoch). If blocks B and B′ with the same epoch number e are
each notarized in honest view, it must be that B = B′.

Proof. Let S be the set of > n/2 nodes that voted for B and let S′ be the set of > n/2 nodes that
voted for B′. The intersection of S and S′ has size |S ∩ S′| > n/2 + n/2 − n = 0, implying that
at least one node must have voted for both B and B′. Assume for the sake of contradiction that
B 6= B′. This is absurd, since by the protocol definition, a node votes for at most one block with
the epoch number e (by virtue of voting at most once during epoch e, and only voting for proposals
with an epoch number that matches the current epoch).

Lemma 11. If some node sees a notarized chain with three adjacent blocks B0,B1,B2 with consec-
utive epoch numbers e, e + 1, and e + 2, then there cannot be a conflicting block B 6= B1 that also
gets notarized in honest view with the same length as B1.

Proof. Denote the lengths of B0,B1, and B2 as `, ` + 1, and ` + 2 respectively. Denote the epoch
number of B as eB.

Assume for the sake of contradiction that some block B 6= B1 with the same length as B1 is indeed
notarized in honest view. By Lemma 10, eB cannot equal e, e + 1, or e + 2, since B /∈ {B0,B1,B2}.
Then there are two cases:

1. Case eB < e. Let S be the set of > n/2 nodes that voted for B and let S′ be the set of > n/2
nodes that voted for B0. Again, the intersection of S and S′ has size |S ∩ S′| > 0, implying
that at least one node i ∈ S ∩ S′ voted for both B and B0.

Now notice that node i must have voted for B by the end of epoch eB, and thus before the
beginning of epoch e. This implies that node i must have observed a notarized chain of
length ` before the beginning of epoch e (by observing B’s notarized parent chain, which is a
prerequisite for voting). However, in epoch e, node i voted for B0 which has length `. This is
a contradiction because by the protocol description, i cannot vote for B0 since it has already
seen a notarized chain of length ` by the time it votes.

2. Case eB > e + 2. The argument here is nearly identical. This time, let S be the set of > n/2
nodes that voted for B and let S′ be the set of > n/2 nodes that voted for B2. Again, the
intersection of S and S′ has size |S ∩S′| > 0, implying that at least one node i ∈ S ∩S′ voted
for both B and B2.

Node i must have voted for B2 by the end of epoch e + 2, and thus i observes a notarized
parent chain of length ` + 1 by the end of epoch e + 2. However, during epoch eB > e + 2,
node i votes for B which has length ` + 1. This is a contradiction because by the protocol
description, i cannot vote for B since it has already seen a notarized chain of length ` + 1 by
the time it votes.

Theorem 12 (Consistency). Suppose that chain and chain′ are two notarized chains in honest view
both ending at three blocks with consecutive epoch numbers. Denote the length of chain as `, and the
length of chain′ as `′. Moreover, suppose that ` ≤ `′. It must be that chain[: `− 1] � chain′[: `′− 1].
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Proof. The proof from Theorem 3 of the partially synchronous setting works here, replacing Lemma 2
with Lemma 11.

A.4 Liveness

The liveness argument from Section 3 still works here word-for-word. So Fact 1, Fact 2, Lemma 5
and Theorem 6 from Section 3 hold and the protocol has liveness:

Theorem 13 (Liveness). After GST, suppose that there are 5 consecutive epochs e, e+ 1, . . . , e+ 4
all with honest leaders. By the beginning of epoch e + 5, every honest node must have observed a
new final block that was not final at the beginning of epoch e. Moreover, this new block was proposed
by an honest leader.

B Additional Proofs

Here, we restate Lemma 2 and provide a complete proof. Recall for context that we are in the
partially synchronous setting, and f < n/3.

Lemma 14 (Main consistency lemma). If some honest node sees a notarized chain with three
adjacent blocks B0,B1,B2 with consecutive epoch numbers e, e + 1, and e + 2, then there cannot be
a conflicting block B 6= B1 that also gets notarized in honest view at the same length as B1.

Proof. Denote the lengths of B0,B1, and B2 as `, ` + 1, and ` + 2 respectively. Denote the epoch
number of B as eB.

Assume for the sake of contradiction that some block B 6= B1 with the same length as B1 is indeed
notarized in honest view. By Lemma 1, eB cannot equal e, e + 1, or e + 2, since B /∈ {B0,B1,B2}.
Then there are two cases:

1. Case eB < e. Let S be the set of ≥ 2n/3 nodes that voted for B and let S′ be the set of ≥ 2n/3
nodes that voted for B0. The intersection of S and S′ has size |S ∩ S′| ≥ 2n/3 + 2n/3− n =
n/3 > f , implying that at least one honest node i ∈ S ∩ S′ voted for both B and B0.

Now notice that node i must have voted for B by the end of epoch eB, and thus before the
beginning of epoch e. This implies that node i must have observed a notarized chain of
length ` before the beginning of epoch e (by observing B’s notarized parent chain, which is a
prerequisite for voting). However, in epoch e, node i voted for B0 which has length `. This is
a contradiction because by the protocol description, i cannot vote for B0 since it has already
seen a notarized chain of length ` by the time it votes.

2. Case eB > e+ 2. The argument here is nearly identical. This time, let S be the set of ≥ 2n/3
nodes that voted for B and let S′ be the set of ≥ 2n/3 nodes that voted for B2. Again, the
intersection of S and S′ has size |S ∩S′| ≥ 2n/3 + 2n/3−n = n/3 > f , implying that at least
one honest node i ∈ S ∩ S′ voted for both B and B2.

Node i must have voted for B2 by the end of epoch e + 2, and thus i observes a notarized
parent chain of length ` + 1 by the end of epoch e + 2. However, during epoch eB > e + 2,
node i votes for B which has length ` + 1. This is a contradiction because by the protocol
description, i cannot vote for B since it has already seen a notarized chain of length ` + 1 by
the time it votes.
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